Efficient Workstealing for Multicore Event-Driven
Systems

Fabien Gaud!, Sylvain Geneves', Renaud Lachaize!, Baptiste
Lepersz, Fabien Mottet?, Gilles Muller?, Vivien Quéma3

LUniversity of Grenoble
2INRIA

3CNRS

International Conference on Distributed Computing Systems
2010

27

QOutline

@ Context

© Evaluation of Libasync-SMP workstealing
© Contributions

@ Performance evaluation

© Conclusion

2/27

Objectives

Application domain : data servers

Focus on event-driven programming

Multicore architectures are mainstream

Exploiting the available hardware parallelism becomes crucial
for data server performance

= Our goal is to provide an efficient multicore runtime for
event-driven programming

Event-driven runtime basics

@ Application is structured as a set of handlers processing
events.

@ An event can be triggered by an |/O or produced internally

@ The runtime engine repeatedly processes events from its
queue
e Get an event from the runtime’s queue
o Call the associated handler which may produce new events

Multicore event-driven runtime

@ Challenges
e Helping programmers dealing with concurrency

o Locks
e STM
e Annotations

o Efficiently dispatching events on cores

e Static placement
o Load balancing through workgiving
e Load balancing through workstealing

= Libasync-SMP is an annotation-based multicore event-driven
runtime

Libasync-SMP [Zeldovich03]

@ One event queue per core
@ Mutual exclusion ensured by annotations on events (colors)
@ Event dispatching on cores

e Colors are initially dispatched in a round robin manner

e Load balancing is readjusted through workstealing

‘O Core 3
== Color 0

E == Color 1
Thread vent queue == Color 2

== Color 3

@ Evaluation on two network servers
o Workstealing is only evaluated on micro-benchmarks

27

QOutline

© Evaluation of Libasync-SMP workstealing

727

Expected behavior : the SFS case

@ Many expensive cryptographic operations
@ Good case for workstealing algorithm
o Example : clients accessing a 200MB file

Libasync-smp 1
[Libasync-smp - WS =2

140

-
N
o

-
o
o

[e3)
o

(=2}
o

Throughput (MB/sec)

N
o

N
o

0
= 35% throughput increase thanks to workstealing

Unwanted behavior : the Web server case

@ Web server serving static content
@ Workstealing costs are noticeable
@ Example : clients accessing 1KB files

200 T T
Libasync-smp ——

//\ Libasync-smp - WS -~

a
o

Throughput (KRequests/s)
o
o

a
o

0200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Clients

= 33% throughput decrease due to the workstealing mechanism

27

Unwanted behavior

: the Web server case (2)
Web server configuration Stealing Stolen time Cache
time misses /
event
Libasync-SMP without workstealing - - 9
Libasync-SMP with workstealing 197 Kcycles 20 Kcycles 21

@ Very high stealing costs >> stolen computing time

@ Very low cache efficiency : +146% L2 cache misses over
Libasync-smp without workstealing

10 / 27

Problem statement

@ Naive workstealing can hurt system performance

@ This paper improves workstealing performance for multicore
event-driven runtimes

@ Majors differences with workstealing for thread-based runtimes

o Tasks are more fine grained
@ Sensitivity to stealing costs

@ One core can post tasks to another core
e Cannot use efficient DEqueue structures [Chase05)]

e Stealing is constrained by colors
e O(n) workstealing algorithm

11

27

Workstealing main steps

core_set = construct_core_set();
foreach(core ¢ in core_set) {
LOCK (c);
if (can_be_stolen(c)) {
color = choose_colors_to_steal(c);
event_set = construct_event_set(c, color);
}
UNLOCK (c);
if (!is_empty (event_set)) {
LOCK (myself);
migrate(event_set);
UNLOCK (myself);
exit;

(1)

(2)
(3

12/

27

QOutline

© Contributions
@ Improving the workstealing algorithm

13 /27

Idea #1 : Taking hardware topology into
account

core_set = construct_core_set(); (1)

In a multicore system, some cores usually share caches

Time needed to access cached data is significantly faster than
accessing them in main memory

Idea : Take the cache hierarchy into consideration when
stealing

Locality-aware stealing = Give priority to a neighbor when
stealing

14 /27

Idea #2 : Taking into account computation
length

if (can_be_stolen(c)) { (2)

Many event handlers are relatively fine grain

@ In our context, workstealing may have a significant cost

Idea : Stealing some type of events is not beneficial

Time-left stealing : know at any time which colors are worthy

Handler execution time is currently set by the programmer but
could be discovered at runtime

15 /27

Idea #3 : Taking cache footprint into
consideration

color = choose_colors_to_steal(c); (3)

@ Sometime events can be stolen but are not the best
candidates

e For example, event handlers accessing large, long-lived, data
sets

@ Penalty-aware stealing : giving penalty to events handlers
based on their behavior

@ Penalties are set by the programmer based on preliminary
profiling and/or using application behavior knowledge

16 / 27

QOutline

© Contributions

@ Making runtime internals workstealing friendly

17 /27

The Mely runtime

‘ Q Core X

color-queue = Color 0 <«—» core-queue
== Color 1

== Color 2 .
<--» stealing-queue
O Thread == Color 3 ing-q

Backward compatible with Libasync-SMP

One thread per core

One color-queue per color

One core-queue per core that links color-queues

One stealing-queue per core that allows to efficiently
implement Time-left and Penalty-aware stealing strategies

18

27

Outline

@ Context
© Evaluation of Libasync-SMP workstealing

© Contributions
@ Improving the workstealing algorithm
@ Making runtime internals workstealing friendly

@ Performance evaluation

© Conclusion

Efficient Workstealing for Multicore Event-Driven Systems

SFS

@ 15 clients repeatedly request a 200MB file
@ 60% time spent in cryptographic operations = only color
cryptographic operations

160

Lib p —— |
Libasync-smp - WS =—=
Mely - WS s

140

120

100

MB/sec

80

60

40

20

0

= as expected same throughput as the legacy workstealing
mechanism

Web server

Returns static page content (1KB files requested)
Closed-loop injection
5 load injectors simulating between 200 and 2000 clients

Architecture is based on legacy design
e Per-connection coloring

RegisterFd
InEpoll

21 /27

200

Throughput (KRequests/s)
S o
o o

a
o

0200 400 600 800

Web server evaluation

Mely - WS -
Libasync-smp ——
Mely --o-

e Libasync-smp - WS -

Number of Clients

1000 1200 1400 1600 1800 2000

= Up to 73% improvement over the libasync-SMP workstealing
mechanism

200

Web server evaluation (2)

e
ul
o

Throughput (KRequests/s)
)
o

a1
o

) R « Mely - WS -
o ' Userver =
Apache -—=-
%
o -
S S— B Ko
-
@ &
- -
b B B e el -
e

0200

400 600 800 1000 1200 1400 1600 1800 2000
Number of Clients

= Performances better than other real world Web servers

23/

27

Web server profiling

Web server configura-

tion Stealing time Stolen time Cache misses /
event

Libasync-SMP without

; - - 9
workstealing
leasync—sMP with 197 Kcycles 20 Kcycles 21
workstealing
Mely with workstealing 6 Kcycles 23 Kcycles 9

o Low stealing overhead : 6 Kcycles < stolen computing time

@ Much more cache-efficient than Libasync-SMP

e Locality and penalty aware heuristics decrease the number of
L2 cache misses by 24%

27

Outline

@ Context
© Evaluation of Libasync-SMP workstealing
© Contributions

@ Performance evaluation

© Conclusion

Efficient Workstealing for Multicore Event-Driven Systems

——SEVEd

Conclusion

o Context
o Event driven programming for system services on multicore

architectures
o Workstealing sometimes degrades performances in such

systems

@ Contributions
o New heuristics to improve workstealing efficiency
e Revised runtime internals to reduce workstealing costs
= Improved Web server performance by 73% compared to the

legacy workstealing mechanism.

@ Future work : Automating runtime profiling and decision

27

Thank You'!

Questions ?

27

	Presentation
	Context
	Evaluation of Libasync-SMP workstealing
	Contributions
	Improving the workstealing algorithm
	Making runtime internals workstealing friendly

	Performance evaluation
	Conclusion

