
Efficient Workstealing for Multicore Event-Driven
Systems

Fabien Gaud1, Sylvain Genevès1, Renaud Lachaize1, Baptiste
Lepers2, Fabien Mottet2, Gilles Muller2, Vivien Quéma3

1University of Grenoble

2INRIA

3CNRS

International Conference on Distributed Computing Systems
2010

1 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Outline

1 Context

2 Evaluation of Libasync-SMP workstealing

3 Contributions

4 Performance evaluation

5 Conclusion

2 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Objectives

Application domain : data servers

Focus on event-driven programming

Multicore architectures are mainstream

Exploiting the available hardware parallelism becomes crucial
for data server performance

⇒ Our goal is to provide an efficient multicore runtime for
event-driven programming

3 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Event-driven runtime basics

Application is structured as a set of handlers processing
events.

An event can be triggered by an I/O or produced internally

The runtime engine repeatedly processes events from its
queue

Get an event from the runtime’s queue
Call the associated handler which may produce new events

4 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Multicore event-driven runtime

Challenges
Helping programmers dealing with concurrency

Locks
STM
Annotations

Efficiently dispatching events on cores

Static placement
Load balancing through workgiving
Load balancing through workstealing

⇒ Libasync-SMP is an annotation-based multicore event-driven
runtime

5 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Libasync-SMP [Zeldovich03]

One event queue per core

Mutual exclusion ensured by annotations on events (colors)
Event dispatching on cores

Colors are initially dispatched in a round robin manner
Load balancing is readjusted through workstealing

Event queueThread

Core 1 Core 2 Core 3 Core 4

Color 0

Color 1

Color 2

Color 3

Evaluation on two network servers
Workstealing is only evaluated on micro-benchmarks

6 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Outline

1 Context

2 Evaluation of Libasync-SMP workstealing

3 Contributions
Improving the workstealing algorithm
Making runtime internals workstealing friendly

4 Performance evaluation

5 Conclusion

7 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Expected behavior : the SFS case

Many expensive cryptographic operations

Good case for workstealing algorithm

Example : clients accessing a 200MB file

 0

 20

 40

 60

 80

 100

 120

 140

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Libasync-smp
Libasync-smp - WS

⇒ 35% throughput increase thanks to workstealing

8 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Unwanted behavior : the Web server case

Web server serving static content
Workstealing costs are noticeable
Example : clients accessing 1KB files

 0

 50

 100

 150

 200

 200  400  600  800  1000  1200  1400  1600  1800  2000

Th
ro

ug
hp

ut
 (K

R
eq

ue
st

s/
s)

Number of Clients

Libasync-smp
Libasync-smp - WS

⇒ 33% throughput decrease due to the workstealing mechanism

9 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Unwanted behavior : the Web server case (2)

Web server configuration Stealing
time

Stolen time Cache
misses /

event
Libasync-SMP without workstealing - - 9
Libasync-SMP with workstealing 197 Kcycles 20 Kcycles 21

Very high stealing costs � stolen computing time

Very low cache efficiency : +146% L2 cache misses over
Libasync-smp without workstealing

10 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Problem statement

Naive workstealing can hurt system performance

This paper improves workstealing performance for multicore
event-driven runtimes

Majors differences with workstealing for thread-based runtimes

Tasks are more fine grained

Sensitivity to stealing costs

One core can post tasks to another core

Cannot use efficient DEqueue structures [Chase05]

Stealing is constrained by colors

O(n) workstealing algorithm

11 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Workstealing main steps

core set = construct core set(); (1)

foreach(core c in core_set) {

LOCK(c);

if(can be stolen(c)) { (2)

color = choose colors to steal(c); (3)

event set = construct event set(c, color);

}

UNLOCK(c);

if(! is_empty(event_set )) {

LOCK(myself );

migrate(event set);

UNLOCK(myself );

exit;

}

}

12 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Outline

1 Context

2 Evaluation of Libasync-SMP workstealing

3 Contributions
Improving the workstealing algorithm
Making runtime internals workstealing friendly

4 Performance evaluation

5 Conclusion

13 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Idea #1 : Taking hardware topology into
account

core_set = construct_core_set (); (1)

In a multicore system, some cores usually share caches

Time needed to access cached data is significantly faster than
accessing them in main memory

Idea : Take the cache hierarchy into consideration when
stealing

Locality-aware stealing ⇒ Give priority to a neighbor when
stealing

14 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Idea #2 : Taking into account computation
length

if(can_be_stolen(c)) { (2)

Many event handlers are relatively fine grain

In our context, workstealing may have a significant cost

Idea : Stealing some type of events is not beneficial

Time-left stealing : know at any time which colors are worthy

Handler execution time is currently set by the programmer but
could be discovered at runtime

15 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Idea #3 : Taking cache footprint into
consideration

color = choose_colors_to_steal(c); (3)

Sometime events can be stolen but are not the best
candidates

For example, event handlers accessing large, long-lived, data
sets

Penalty-aware stealing : giving penalty to events handlers
based on their behavior

Penalties are set by the programmer based on preliminary
profiling and/or using application behavior knowledge

16 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Outline

1 Context

2 Evaluation of Libasync-SMP workstealing

3 Contributions
Improving the workstealing algorithm
Making runtime internals workstealing friendly

4 Performance evaluation

5 Conclusion

17 / 27

Efficient Workstealing for Multicore Event-Driven Systems



The Mely runtime

Core X

core-queue

stealing-queue

Color 0

Color 1

Color 2

Color 3

color-queue

Thread

Backward compatible with Libasync-SMP

One thread per core

One color-queue per color

One core-queue per core that links color-queues

One stealing-queue per core that allows to efficiently
implement Time-left and Penalty-aware stealing strategies

18 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Outline

1 Context

2 Evaluation of Libasync-SMP workstealing

3 Contributions
Improving the workstealing algorithm
Making runtime internals workstealing friendly

4 Performance evaluation

5 Conclusion

19 / 27

Efficient Workstealing for Multicore Event-Driven Systems



SFS

15 clients repeatedly request a 200MB file
60% time spent in cryptographic operations ⇒ only color
cryptographic operations

 0

 20

 40

 60

 80

 100

 120

 140

 160
M

B
/s

ec
Libasync-smp

Libasync-smp - WS
Mely - WS

⇒ as expected same throughput as the legacy workstealing
mechanism

20 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Web server

Returns static page content (1KB files requested)

Closed-loop injection

5 load injectors simulating between 200 and 2000 clients

Architecture is based on legacy design

Per-connection coloring

Parse

Request
Read

Request

Write

Response

Close

Epoll

Dec

Accepted

Clients

RegisterFd

InEpoll

Accept
GetFrom

Cache

21 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Web server evaluation

 0

 50

 100

 150

 200

 200  400  600  800  1000  1200  1400  1600  1800  2000

Th
ro

ug
hp

ut
 (K

R
eq

ue
st

s/
s)

Number of Clients

Mely - WS
Libasync-smp

Mely
Libasync-smp - WS

⇒ Up to 73% improvement over the libasync-SMP workstealing
mechanism

22 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Web server evaluation (2)

 0

 50

 100

 150

 200

 200  400  600  800  1000  1200  1400  1600  1800  2000

Th
ro

ug
hp

ut
 (K

R
eq

ue
st

s/
s)

Number of Clients

Mely - WS
Userver
Apache

⇒ Performances better than other real world Web servers

23 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Web server profiling

Web server configura-
tion

Stealing time Stolen time Cache misses /
event

Libasync-SMP without
workstealing

- - 9

Libasync-SMP with
workstealing

197 Kcycles 20 Kcycles 21

Mely with workstealing 6 Kcycles 23 Kcycles 9

Low stealing overhead : 6 Kcycles < stolen computing time

Much more cache-efficient than Libasync-SMP

Locality and penalty aware heuristics decrease the number of
L2 cache misses by 24%

24 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Outline

1 Context

2 Evaluation of Libasync-SMP workstealing

3 Contributions

4 Performance evaluation

5 Conclusion

25 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Conclusion

Context

Event driven programming for system services on multicore
architectures
Workstealing sometimes degrades performances in such
systems

Contributions

New heuristics to improve workstealing efficiency
Revised runtime internals to reduce workstealing costs

⇒ Improved Web server performance by 73% compared to the
legacy workstealing mechanism.

Future work : Automating runtime profiling and decision

26 / 27

Efficient Workstealing for Multicore Event-Driven Systems



Thank You !

Questions ?

27 / 27

Efficient Workstealing for Multicore Event-Driven Systems


	Presentation
	Context
	Evaluation of Libasync-SMP workstealing
	Contributions
	Improving the workstealing algorithm
	Making runtime internals workstealing friendly

	Performance evaluation
	Conclusion


