
Improving the performance of data servers on
multicore architectures

Fabien Gaud
Grenoble University

Advisors:
Jean-Bernard Stefani, Renaud Lachaize and Vivien Quéma

Sardes (INRIA/LIG)

December 2, 2010

1 / 50

Improving the performance of data servers on multicore architectures

Processor evolution

Before ∼2006:

One core
Regular increase of clock frequency

Since then:

Almost no increase of clock frequency
Increasing number of cores:

Multicore architectures
NUMA architectures
Manycore architectures

2 / 50

Improving the performance of data servers on multicore architectures

Multicore is a hot topic

Legacy applications do not efficiently leverage multicore
hardware

Research topics:

Programming models/languages
Operating systems abstractions/internals
Runtime/libraries
Applications

Active research field:

Corey (OSDI’08)
Barrelfish (SOSP’09), Helios (SOSP’09)
PK (OSDI’10)

3 / 50

Improving the performance of data servers on multicore architectures

This thesis

Application domain: data servers, a.k.a. networked services

Goal: Improve the performance of data servers on multicore
architectures

Contributions:
Efficient multicore event-driven programming
Scaling the Apache Web server on NUMA multicore systems

4 / 50

Improving the performance of data servers on multicore architectures

#1: Efficient multicore event-driven programming

CFSE 2009 (best paper award)

ICDCS 2010

5 / 50

Improving the performance of data servers on multicore architectures

Event-driven programming

Application is structured as a set of handlers processing
events

An event can be:

Triggered by an I/O operation
Produced internally by the application

Events are stored in a queue and processed by a single
thread

Handler 1

Handler 2

Handler 3

Handler 4

Control Loop

Event

6 / 50

Improving the performance of data servers on multicore architectures

Multicore event-driven programming

Goal: concurrently execute multiple handlers

Challenges:
Concurrency management
Balancing load on cores

Solutions:
N-Copy
1-Copy with synchronization

7 / 50

Improving the performance of data servers on multicore architectures

N-Copy

Principle: running one instance of the application per core

Core 1 Core 2 Core 3 Core 4

Event queueControl loop Event

A
p
p
1

A
p
p
2

A
p
p
3

A
p
p
4

8 / 50

Improving the performance of data servers on multicore architectures

N-Copy (2)

Advantages:
No concurrency management needed
No application modification needed

Drawbacks:
Not applicable to all applications
Multiple copies of data
Requires external load balancing

9 / 50

Improving the performance of data servers on multicore architectures

1-copy with synchronization

Principle: 1 instance on multiple cores

Concurrency can be managed using:

Locks
STM
Annotations

Load balancing can be achieved with:

Static placement
Workgiving
Workstealing

Chosen approach is implemented in Libasync-SMP (Usenix’03)

10 / 50

Improving the performance of data servers on multicore architectures

Libasync-SMP – Concurrency management

Annotations (colors) set on events

Core 1 Core 2 Core 3 Core 4

Event queueControl loop

Events with color 0

Events with color 1

Events with color 2

Events with color 3

A
p
p
1

11 / 50

Improving the performance of data servers on multicore architectures

Libasync-SMP – Load balancing

Load balancing is done through workstealing

Core 1 Core 2 Core 3 Core 4

Event queueControl loop

Events with color 0

Events with color 1

Events with color 2

Events with color 3

A
p
p
1

12 / 50

Improving the performance of data servers on multicore architectures

1-Copy with synchronization

Advantages:
Allows sharing between cores
Allows load balancing between cores

Drawbacks:
Need to modify the application
Efficient load balancing is difficult

13 / 50

Improving the performance of data servers on multicore architectures

Workstealing performance: SFS

 0

 20

 40

 60

 80

 100

 120

 140

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Libasync-smp
Libasync-smp - WS

35% throughput increase

14 / 50

Improving the performance of data servers on multicore architectures

Workstealing performance: Web server

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Libasync-smp
Libasync-smp - WS

33% throughput decrease

15 / 50

Improving the performance of data servers on multicore architectures

What is the problem?

Fine grain events:

Stealing time (197 Kcycles) � stolen processing time (20
Kcycles)

Inefficient cache usage:

+146% L2 cache misses

Inefficient workstealing implementation

O(n) complexity

16 / 50

Improving the performance of data servers on multicore architectures

Contributions

New:
Workstealing algorithm
Runtime implementation

Fine grain events:

Algorithm: steal events with high execution time

Inefficient cache usage:

Algorithm: steal cache-friendly events
Algorithm: take cache hierarchy into account

Inefficient workstealing implementation

Runtime: mitigate stealing costs

17 / 50

Improving the performance of data servers on multicore architectures

Idea #1: Take into account execution time

Problem: stealing cost is not always amortized

Many event handlers are relatively fine grain
Workstealing may have a significant cost

Solution: Time-left stealing

Know at any time which colors are worthy
(Handler execution time is set by the programmer)

18 / 50

Improving the performance of data servers on multicore architectures

Idea #2: Take into account caches

Problem: Workstealing can reduce cache efficiency

Stealing events increases cache misses
Example: event handlers accessing large, long-lived, data sets

Solution 1: Penalty-aware stealing

Set penalties on handlers based on their cache access pattern
(Penalties are set manually based on preliminary profiling)

Solution 2: Locality-aware stealing

Give priority to a neighbor when stealing

19 / 50

Improving the performance of data servers on multicore architectures

Runtime implementation

Core X

core-queue

stealing-queue

Color 0

Color 1

Color 2

Color 3

color-queue

Control loop

One color-queue per color

One core-queue per core that links color-queues

One stealing-queue per core

20 / 50

Improving the performance of data servers on multicore architectures

Performance evaluation: SFS

 0

 20

 40

 60

 80

 100

 120

 140

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Libasync-smp
Libasync-smp - WS

Mely - WS

No throughput degradation

21 / 50

Improving the performance of data servers on multicore architectures

Performance evaluation: Web server

 0

 50

 100

 150

 200

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Libasync-smp
Libasync-smp - WS

Mely - WS

73% throughput improvement

22 / 50

Improving the performance of data servers on multicore architectures

Web server profiling

Web server configuration Stealing time Stolen time Cache misses/event
Libasync-SMP - WS 197 Kcycles 20 Kcycles 21
Mely - WS 6 Kcycles 23 Kcycles 9

Stealing time (6 Kcycles) < stolen processing time (23
Kcycles)

Improved cache efficiency: -57% L2 cache misses

23 / 50

Improving the performance of data servers on multicore architectures

Summary

Goal: efficient runtime for multicore event-driven systems

Problem: workstealing sometimes degrades performance

Contributions:
New workstealing algorithm
New runtime implementation

Results: improve throughput by up to 73%

24 / 50

Improving the performance of data servers on multicore architectures

#2: Scaling the Apache Web server on NUMA
multicore systems

Under submission

25 / 50

Improving the performance of data servers on multicore architectures

Problem

0

2000

4000

6000

8000

10000

1 2 3 4

#
of

cl
ie

nt
s

pe
rd

ie

of dies

Ideal scalability
Apache

-26%

The Apache web server do not scale on NUMA architectures

26 / 50

Improving the performance of data servers on multicore architectures

What can we do?

Address scalability issues at the OS level

Corey (OSDI 08)
Barrelfish (SOSP 09)
PK (OSDI 10)

27 / 50

Improving the performance of data servers on multicore architectures

Apache on PK

0

2000

4000

6000

8000

10000

1 2 3 4

#
of

cl
ie

nt
s

pe
rd

ie

of dies

Ideal scalability
Apache on PK

Apache

-22%

Does not solve scalability issues

28 / 50

Improving the performance of data servers on multicore architectures

What do we propose?

Addressing scalability issues at the OS level is not sufficient

Application-level issues
Some issues are difficult to handle (e.g. scheduling)

Approach: address scalability issues at the application level

29 / 50

Improving the performance of data servers on multicore architectures

Methodology

Consider both hardware and software bottlenecks

Hardware bottlenecks:

Processor interconnect
Distant memory accesses

Software bottlenecks:

Synchronization primitives

30 / 50

Improving the performance of data servers on multicore architectures

Hardware testbed

Die 1

DRAM

DRAM

Die 2

DRAM

DRAM

L3
L2
L1

C0 C4 C8 C12I/O C3 C7 C11 C15

24 Gb/s

Die 3

C1 C5 C9 C13C2 C6 C10 C14

61 Gb/s

I/O

24
Gb/s

L2
L1

L2
L1

L2
L1

Die 0

4 processors / 16 cores

31 / 50

Improving the performance of data servers on multicore architectures

Hardware testbed

Die 1

DRAM

DRAM

Die 2

DRAM

DRAM

L3
L2
L1

C0 C4 C8 C12I/O C3 C7 C11 C15

24 Gb/s

Die 3

C1 C5 C9 C13C2 C6 C10 C14

61 Gb/s

I/O

24
Gb/s

L2
L1

L2
L1

L2
L1

Die 0

4 processors / 16 cores

31 / 50

Improving the performance of data servers on multicore architectures

Hardware bottlenecks

Memory efficiency (IPC)

Configuration Average IPC
1 die 0.38
4 dies 0.30

21% IPC decrease

32 / 50

Improving the performance of data servers on multicore architectures

Hardware bottlenecks (2)

IPC decrease:

Reduced cache efficiency

HyperTransport link saturation
Increased number of distant memory accesses

Configuration L3 cache miss ratio (%)
1 die 14
4 dies 14

33 / 50

Improving the performance of data servers on multicore architectures

Hardware bottlenecks (2)

IPC decrease:

Reduced cache efficiency
HyperTransport link saturation

Increased number of distant memory accesses

Configuration Max HT usage (%)
1 die 25
4 dies 75

33 / 50

Improving the performance of data servers on multicore architectures

Hardware bottlenecks (2)

IPC decrease:

Reduced cache efficiency
HyperTransport link saturation
Increased number of distant memory accesses

Configuration Distant accesses/kB
1 die 4
4 dies 14

33 / 50

Improving the performance of data servers on multicore architectures

Request processing

Die 0 Die 1

Die 2 Die 3

DRAM

DRAMDRAM

Request

C0

C10
NIC

C5

DRAM

Receiving a TCP request

34 / 50

Improving the performance of data servers on multicore architectures

Request processing

Die 0 Die 1

Die 2 Die 3

DRAM

DRAMDRAM

C0

C10
NIC

C5

DRAM

HTTP request processing

34 / 50

Improving the performance of data servers on multicore architectures

Request processing

Die 0 Die 1

Die 2 Die 3

DRAM

DRAMDRAM

C0

C10
NIC

C5

DRAM

PHP processing

34 / 50

Improving the performance of data servers on multicore architectures

Request processing

Die 0 Die 1

Die 2 Die 3

DRAM

DRAMDRAM

C0

C10
NIC

C5

DRAM

Sending the response (1)

34 / 50

Improving the performance of data servers on multicore architectures

Request processing

Die 0 Die 1

Die 2 Die 3

DRAM

DRAMDRAM

Reply

C0

C10
NIC

C5

DRAM

Sending the response (2)

34 / 50

Improving the performance of data servers on multicore architectures

Proposal #1

Solution: co-localizing TCP, Apache and PHP processing

Implementation: use one instance of the Apache/PHP stack
per die (N-Copy)

One node manages 5 network interfaces

35 / 50

Improving the performance of data servers on multicore architectures

N-Copy: request processing

Die 0

Die 2 Die 3

DRAM

DRAMDRAM

Request

C2
NIC

DRAM

Die 1

Receiving a TCP request

36 / 50

Improving the performance of data servers on multicore architectures

N-Copy: request processing

Die 0

Die 2 Die 3

DRAM

DRAMDRAM

C2 C10
NIC

DRAM

C6

Die 1

HTTP request processing

36 / 50

Improving the performance of data servers on multicore architectures

N-Copy: request processing

Die 0

Die 2 Die 3

DRAM

DRAMDRAM

C2 C10
NIC

DRAM

C6

Die 1

PHP processing

36 / 50

Improving the performance of data servers on multicore architectures

N-Copy: request processing

Die 0

Die 2 Die 3

DRAM

DRAMDRAM

C2 C10
NIC

DRAM

C6

Die 1

Sending the response (1)

36 / 50

Improving the performance of data servers on multicore architectures

N-Copy: request processing

Die 0

Die 2 Die 3

DRAM

DRAMDRAM

Reply

C2 C10
NIC

DRAM

C6

Die 1

Sending the response (2)

36 / 50

Improving the performance of data servers on multicore architectures

N-Copy: performance

0

2000

4000

6000

8000

10000

1 2 3 4

#
of

cl
ie

nt
s

pe
rd

ie

of dies

Ideal scalability
Apache NCopy

Apache

-19%

9.1% performance improvement compared to stock Apache

37 / 50

Improving the performance of data servers on multicore architectures

N-Copy: performance (2)

Configuration Average IPC Distant accesses/kB
1 die 0.38 4
4 dies (Stock Apache) 0.30 14
4 dies (N-Copy) 0.36 5

Memory efficiency improved by 20%

38 / 50

Improving the performance of data servers on multicore architectures

N-Copy: can we do better?

Die Average CPU usage
Die 0 100
Die 1 85
Die 2 85
Die 3 100

Problem:
Dies are not equally efficient
Load is not properly balanced on dies

39 / 50

Improving the performance of data servers on multicore architectures

N-Copy: load balancing

Solution: balance load on dies proportionally to their
efficiency

Implementation: use an external load balancing mechanism

Currently implemented at client-side
Could be integrated in a more global solution

40 / 50

Improving the performance of data servers on multicore architectures

N-Copy: final performance

0

2000

4000

6000

8000

10000

1 2 3 4

#
of

cl
ie

nt
s

pe
rd

ie

of dies

Ideal scalability
Apache NCopy LB

Apache NCopy
Apache

-10%

21.2% performance improvement compared to stock Apache

41 / 50

Improving the performance of data servers on multicore architectures

Software bottlenecks

Goal: find functions that

Do not scale
Represent a significant execution time

Example:
Function f accounts for

1 cycle/byte at 1 die
10 cycles/byte at 4 dies
20% of the total execution time

18% potential performance gain

42 / 50

Improving the performance of data servers on multicore architectures

Software bottlenecks (2)

Function Potential performance gain (%)
d lookup 2.49%

atomic dec and lock 2.32%
lookup mnt 1.41%
copy user generic string 0.83%
memcpy 0.76%

Problem: the VFS layer does not scale

Aggregated potential performance gain: 6 %
Most of the calls are issued by the stat function

43 / 50

Improving the performance of data servers on multicore architectures

Proposal #2

Solution: use an application-level cache to reduce the
number of calls to stat

Implementation:
Modified the Apache ap directory walk function
Using inotify for file updates

44 / 50

Improving the performance of data servers on multicore architectures

Stat cache: performance

0

2000

4000

6000

8000

10000

1 2 3 4

#
of
cl
ie
nt
s
pe
rd
ie

of dies

Ideal scalability
Apache with all optims

Apache NCopy LB
Apache NCopy

Apache

-5%

33% performance improvement compared to stock Apache

45 / 50

Improving the performance of data servers on multicore architectures

Summary

Problem: Apache does not scale on NUMA architectures

Contribution: application-level optimizations considering
NUMA aspects and Linux scalability issues

Results: +33% performance improvement

46 / 50

Improving the performance of data servers on multicore architectures

Conclusion

47 / 50

Improving the performance of data servers on multicore architectures

Conclusion

Application domain: data servers

Goal: Improve the performance of data servers on multicore
architectures

Contributions:
Efficient multicore event-driven programming
Scaling the Apache Web server on NUMA multicore systems

48 / 50

Improving the performance of data servers on multicore architectures

Future work

Short term:

Workstealing: automate profiling and decisions
Apache: study other workloads

Long term:

Study the impact of distant memory accesses on other servers
Study the impact of programming models on multicore
performance
Study the scalability of the Java virtual machine

49 / 50

Improving the performance of data servers on multicore architectures

Questions?

50 / 50

Improving the performance of data servers on multicore architectures

Backup Slides

2 / 50

Improving the performance of data servers on multicore architectures

Web server

Returns static page content (1KB files requested)

Closed-loop injection

5 load injectors simulating between 200 and 2000 clients

Architecture is based on legacy design

Per-connection coloring

Parse
Request

Read
Request

Write
Response

Close

Epoll

Dec
Accepted

Clients
RegisterFd

InEpoll

Accept
GetFrom

Cache

3 / 50

Improving the performance of data servers on multicore architectures

Web server evaluation

 0

 50

 100

 150

 200

 200 400 600 800 1000 1200 1400 1600 1800 2000

Th
ro

ug
hp

ut
 (K

R
eq

ue
st

s/
s)

Number of Clients

Mely - WS
Libasync-smp

Mely
Libasync-smp - WS

⇒ Up to 73% improvement over the Libasync-SMP workstealing
mechanism

4 / 50

Improving the performance of data servers on multicore architectures

Mely - Other web server evaluation (2)

 0

 50

 100

 150

 200

 200 400 600 800 1000 1200 1400 1600 1800 2000

Th
ro

ug
hp

ut
 (K

R
eq

ue
st

s/
s)

Number of Clients

Mely - WS
Userver
Apache

⇒ Performance better than other real world Web servers

5 / 50

Improving the performance of data servers on multicore architectures

Apache – Workload description

SPECWeb2005 Support benchmark

Vendor site
Mostly static / PHP for dynamic pages
Back-end Simulator (BeSim)

Closed-loop injection with think times

Defined QoS:

99% of clients served within 5s
95% of clients served within 3s
Throughput constraints

Modified to fit in main memory: 12GB

6 / 50

Improving the performance of data servers on multicore architectures

Software configuration

Apache 2.2.14

Worker version using both threads and processes
Sendfile enabled to improve performance

PHP 5.2.12

Tuned number of PHP processes
With eAccelerator

Linux 2.6.32

NUMA support
IRQ processing manually balanced
Responsible for dispatching thread and processes

7 / 50

Improving the performance of data servers on multicore architectures

	Title page
	Introduction
	Efficient event-driven programming for multicore platforms
	Scaling the Apache Web server on NUMA multicore systems
	Conclusion
	Appendix

