Improving the performance of data servers on
multicore architectures

Fabien Gaud

Grenoble University

Advisors:
Jean-Bernard Stefani, Renaud Lachaize and Vivien Quéma

Sardes (INRIA/LIG)

December 2, 2010

/ 50

Processor evolution

@ Before ~2006:

e One core
o Regular increase of clock frequency

@ Since then:
e Almost no increase of clock frequency
e Increasing number of cores:

@ Multicore architectures
o NUMA architectures
@ Manycore architectures

50

Multicore is a hot topic

@ Legacy applications do not efficiently leverage multicore
hardware

@ Research topics:

e Programming models/languages
Operating systems abstractions/internals
Runtime/libraries
Applications

@ Active research field:
e Corey (OSDI'08)
o Barrelfish (SOSP'09), Helios (SOSP'09)
o PK (OSDI'10)

50

This thesis

o Application domain: data servers, a.k.a. networked services

@ Goal: Improve the performance of data servers on multicore
architectures

o Contributions:

o Efficient multicore event-driven programming
e Scaling the Apache Web server on NUMA multicore systems

50

#1. Efficient multicore event-driven programming

CFSE 2009 (best paper award)
ICDCS 2010

/ 50

Event-driven programming

@ Application is structured as a set of handlers processing
events
@ An event can be:
o Triggered by an 1/O operation
e Produced internally by the application
@ Events are stored in a queue and processed by a single
thread

Handler 1

Handler 2

Control Loop @

Handler 3

=

Handler 4

50

Multicore event-driven programming

@ Goal: concurrently execute multiple handlers

o Challenges:

e Concurrency management
e Balancing load on cores

e Solutions:
o N-Copy
o 1-Copy with synchronization

50

@ Principle: running one instance of the application per core

N-Copy

=

O

Core 1

Appl

=
®

Core 2

App2
nin

App4

Core 4

Q Control loop

E Event queue

Event

50

N-Copy (2)

o Advantages:

e No concurrency management needed
e No application modification needed

e Drawbacks:
e Not applicable to all applications
o Multiple copies of data
e Requires external load balancing

50

1-copy with synchronization

Principle: 1 instance on multiple cores

Concurrency can be managed using:

o Locks
e STM
e Annotations

Load balancing can be achieved with:

e Static placement
e Workgiving
o Workstealing

Chosen approach is implemented in Libasync-SMP (Usenix'03)

10 / 50

Libasync-SMP — Concurrency management

e Annotations (colors) set on events

Core 3

== Events with color 0
Event == Events with color 1
vent queue .
Control loop q == Events with color 2

== Events with color 3

Libasync-SMP — Load balancing

@ Load balancing is done through workstealing

1) i
— — i
—1 — lai
[A = a
= A == i
O oh
Core 1 Core 3 Core 4

== Events with color 0
Event == Events with color 1
vent queue .
Control loop q == Events with color 2

== Events with color 3

12

50

1-Copy with synchronization

o Advantages:

o Allows sharing between cores
o Allows load balancing between cores

o Drawbacks:

e Need to modify the application
e Efficient load balancing is difficult

13

50

Workstealing performance: SFS

140

Throughput (MB/sec)
IS ® o =) N
o o o o o

N
o

Libasync-smp 1

| Libasync-smp - WS =

35% throughput increase

14 / 50

Workstealing performance: Web server

180 :
Libasync-smp 1

Libasync-smp - WS 3

160

140

-
N
o

—_
o
o

Throughput (MB/sec)
[e+]
o

[o2]
o

N
<)

N
o

o

33% throughput decrease

15 / 50

What is the problem?

@ Fine grain events:

o Stealing time (197 Kcycles) > stolen processing time (20
Kcycles)

@ Inefficient cache usage:
o +146% L2 cache misses

o Inefficient workstealing implementation
o O(n) complexity

16 / 50

Contributions

New:

o Workstealing algorithm
e Runtime implementation

Fine grain events:
o Algorithm: steal events with high execution time

Inefficient cache usage:

o Algorithm: steal cache-friendly events
o Algorithm: take cache hierarchy into account

Inefficient workstealing implementation
e Runtime: mitigate stealing costs

17

50

Idea #1: Take into account execution time

@ Problem: stealing cost is not always amortized

e Many event handlers are relatively fine grain
o Workstealing may have a significant cost

@ Solution: Time-left stealing

e Know at any time which colors are worthy
o (Handler execution time is set by the programmer)

18 / 50

Idea #2: Take into account caches

@ Problem: Workstealing can reduce cache efficiency

o Stealing events increases cache misses
o Example: event handlers accessing large, long-lived, data sets

@ Solution 1: Penalty-aware stealing

e Set penalties on handlers based on their cache access pattern
o (Penalties are set manually based on preliminary profiling)

@ Solution 2: Locality-aware stealing
e Give priority to a neighbor when stealing

19 / 50

Runtime implementation

O Core X

== Color 0
color-queue <«—» core-queue

== Color 1

== Color 2

<--» stealing-queue
Control loop == Color 3

@ One color-queue per color
@ One core-queue per core that links color-queues

@ One stealing-queue per core

20

50

140

Throughput (MB/sec)
IS @ ® S o
o o o o o

n
o

Performance evaluation: SFS

Libasync-smp

| Libasync-smp - WS 3
Mely - WS

No throughput degradation

21 / 50

Performance evaluation: Web server
200

Libasync-smp
Libasync-smp - WS 3
Mely - WS

_
o
o

Throughput (MB/sec)
=
o

[$))
o

73% throughput improvement

22 / 50

Web server profiling

Web server configuration

Stealing time

Stolen time

Cache misses/event

Libasync-SMP - WS

197 Kcycles

20 Kcycles

21

Mely - WS

6 Kcycles

23 Kcycles

9

@ Stealing time (6 Kcycles) < stolen processing time (23

Kcycles)

@ Improved cache efficiency: -57% L2 cache misses

50

Summary

Goal: efficient runtime for multicore event-driven systems

Problem: workstealing sometimes degrades performance

Contributions:

o New workstealing algorithm
e New runtime implementation

Results: improve throughput by up to 73%

50

#2: Scaling the Apache Web server on NUMA
multicore systems

Under submission

25 / 50

Problem

10000 T T
\
8000 6%
.9 \r_
©
5 6000
o
}g
c
o
2 4000
(o]
#*
2000
Ideal scalability -------
0 Apache —

of dies

The Apache web server do not scale

on NUMA architectures

26 /

50

What can we do?

@ Address scalability issues at the OS level
o Corey (OSDI 08)
o Barrelfish (SOSP 09)
o PK (OSDI 10)

27 / 50

of clients per die

10000

8000

6000

4000

2000

Apache on PK

\
290
=22

\J
Ideal scalability -------
Apache on PK ——

Apache — ‘
4

of dies

Does not solve scalability issues

28 / 50

What do we propose?

@ Addressing scalability issues at the OS level is not sufficient

o Application-level issues
o Some issues are difficult to handle (e.g. scheduling)

@ Approach: address scalability issues at the application level

29 / 50

Methodology

@ Consider both hardware and software bottlenecks

@ Hardware bottlenecks:

o Processor interconnect
e Distant memory accesses

@ Software bottlenecks:
e Synchronization primitives

30 / 50

Hardware testbed

DRAM
DRAM 61 Gb/s
I/O
<> 24 Gb/s
L3 |pie 0 Die 1
N
24
Gbs
DRAM DRAM

@ 4 processors / 16 cores

31 /50

Hardware testbed

DRAM
DRAM 61 Gb/s
I/O
<) 24 Gb/s
L3 |pie 0 Die 1
Die 2 Die 3 I/O
<
24
Gb/s
DRAM DRAM

@ 4 processors / 16 cores

31 /50

Hardware bottlenecks

e Memory efficiency (IPC)

Configuration | Average IPC
1 die 0.38
4 dies 0.30

21% IPC decrease

32 /50

Hardware bottlenecks (2)

o |IPC decrease:
o Reduced cache efficiency

Configuration | L3 cache miss ratio (%)
1 die 14
4 dies 14

33 /50

Hardware bottlenecks (2)

@ IPC decrease:

o R he offici

e HyperTransport link saturation

Configuration

Max HT usage (%)

1 die

25

4 dies

75

33 /50

Hardware bottlenecks (2)

@ IPC decrease:
. .
o1 T " y o

e Increased number of distant memory accesses

Configuration | Distant accesses/kB
1 die 4
4 dies 14

33 /50

Request processing

NIC

DRAM DRAM
Die O Die 1
Die 2 Die 3
e

DRAM DRAM

Receiving a TCP request

)

|
Request

34 /50

Request processing

DRAM

DRAM

Die O

Die 1

Eez

Die 3

DRAM

DRAM

NIC

HTTP request processing

34 /50

Request processing

DRAM DRAM
c5
Die O Die 1
Die 2 Die 3

DRAM DRAM

NIC

PHP processing

34 /50

Request processing

DRAM DRAM
Die 0 Die1)

Die 2 Die 3 &

IC10|

DRAM

DRAM

NIC

Sending the response (1)

34 /50

Request processing

DRAM

DRAM
K

Die O

pie1)

Die 2

IC10|

Die 3

Reply

DRAM

NIC

DRAM

Sending the response (2)

34 /50

Proposal #1

@ Solution: co-localizing TCP, Apache and PHP processing

e Implementation: use one instance of the Apache/PHP stack
per die (N-Copy)

e One node manages 5 network interfaces

35 /50

N-Copy: request processing

NIC

DRAM DRAM
Die 2 Die 3
e
DRAM DRAM

Receiving a TCP request

A
Request

36 / 50

N-Copy: request processing

DRAM DRAM

Die 2 Die 3
NIC

DRAM DRAM

HTTP request processing

36 / 50

N-Copy: request processing

DRAM DRAM
Die 2 Die 3
DRAM DRAM

PHP processing

36 / 50

N-Copy: request processing

DRAM DRAM
Die 2 Die 3
DRAM DRAM

Sending the response (1)

NIC

36 / 50

N-Copy: request processing

Sending the response (2)

DRAM DRAM

Die 2 Die 3 RepY

"
DRAM i DRAM

36 / 50

10000

8000

2]
o
o
o

N
o
o
S

of clients per die

2000

9.1% performance improvement compared to stock Apache

N-Copy: performance

-19%

Ideal scalability -------
Apache NCopy ——
Apache —

of dies

37 / 50

N-Copy: performance (2)

Configuration Average IPC | Distant accesses/kB
1 die 0.38 4
4 dies (Stock Apache) 0.30 14
4 dies (N-Copy) 0.36 5

Memory efficiency improved by 20%

38 / 50

N-Copy: can we do better?

Die Average CPU usage
Die 0 100
Die 1 85
Die 2 85
Die 3 100

@ Problem:

o Dies are not equally efficient
e Load is not properly balanced on dies

39 / 50

N-Copy: load balancing

@ Solution: balance load on dies proportionally to their
efficiency

o Implementation: use an external load balancing mechanism

o Currently implemented at client-side
e Could be integrated in a more global solution

40

50

N-Copy: final performance

10000 T T
-10% §
8000
) \
©
5 6000
o
b2]
f
ko)
2 4000
[e]
**
2000 - Ideal scalability -------
Apache NCopy LB ——
Apache NCopy ——
0 Apache — ‘
1 2 3 4

of dies

21.2% performance improvement compared to stock Apache

41 /50

Software bottlenecks

@ Goal: find functions that

e Do not scale
o Represent a significant execution time

@ Example:
e Function f accounts for

o 1 cycle/byte at 1 die
@ 10 cycles/byte at 4 dies
@ 20% of the total execution time

o 18% potential performance gain

42

50

Software bottlenecks (2)

Function Potential performance gain (%)
__d_lookup 2.49%
_atomic_dec_and_lock 2.32%
lookup_mnt 1.41%
copy_user_generic_string 0.83%

0.76%

memcpy

Problem: the VFS layer does not scale

o Aggregated potential performance gain: 6 %
e Most of the calls are issued by the stat function

43 / 50

Proposal #2

@ Solution: use an application-level cache to reduce the
number of calls to stat

o Implementation:

e Modified the Apache ap_directory_walk function
e Using inotify for file updates

44 / 50

Stat cache: performance

10000 T T

8000 \
\

-5%4

2]
o
o
o

N
o
o
S

of clients per die

Ideal scalability -------
2000 - Apache with all optims ——
Apache NCopy LB ——
Apache NCopy ——
Apaphe —_—

of dies

33% performance improvement compared to stock Apache

45 / 50

Summary

@ Problem: Apache does not scale on NUMA architectures

e Contribution: application-level optimizations considering
NUMA aspects and Linux scalability issues

@ Results: +33% performance improvement

46 / 50

Conclusion

Improving the performance of data servers on multicore architectures

—rrar)

Conclusion

o Application domain: data servers

@ Goal: Improve the performance of data servers on multicore
architectures

o Contributions:

o Efficient multicore event-driven programming
e Scaling the Apache Web server on NUMA multicore systems

48

50

Future work

@ Short term:

o Workstealing: automate profiling and decisions
e Apache: study other workloads

e Long term:
e Study the impact of distant memory accesses on other servers
e Study the impact of programming models on multicore
performance
e Study the scalability of the Java virtual machine

49 / 50

Questions?

50 / 5

Backup Slides

Improving the performance of data servers on multicore architectures

Web server

Returns static page content (1KB files requested)
Closed-loop injection
5 load injectors simulating between 200 and 2000 clients

Architecture is based on legacy design
e Per-connection coloring

RegisterFd
InEpoll

Write

Read Parse GetFrom
Request h Request » Cache ” Response "

Epoll

/ 50

200

Throughput (KRequests/s)
S o
o o

a
o

Web server evaluation

Mely - WS -
Libasync-smp ——
Mely --o-

e Libasync-smp - WS -

0200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Clients

= Up to 73% improvement over the Libasync-SMP workstealing
mechanism

Mely - Other web server evaluation (2)

200

e
ul
o

Mely - WS -
Userver &
Apache -—=-

Throughput (KRequests/s)
)
o

a1
o

S

0200

400

600

800 1000 1200 1400 1600 1800 2000
Number of Clients

= Performance better than other real world Web servers

/ 50

Apache — Workload description

SPECWeb2005 Support benchmark

e Vendor site
o Mostly static / PHP for dynamic pages
o Back-end Simulator (BeSim)

Closed-loop injection with think times

Defined QoS:

e 99% of clients served within 5s
e 95% of clients served within 3s
e Throughput constraints

Modified to fit in main memory: 12GB

50

Software configuration

@ Apache 2.2.14

o Worker version using both threads and processes
e Sendfile enabled to improve performance

e PHP 5.2.12

o Tuned number of PHP processes
o With eAccelerator

@ Linux 2.6.32

o NUMA support
e IRQ processing manually balanced
o Responsible for dispatching thread and processes

50

	Title page
	Introduction
	Efficient event-driven programming for multicore platforms
	Scaling the Apache Web server on NUMA multicore systems
	Conclusion
	Appendix

