Large Pages May Be Harmful on NUMA Systems

Fabien Gaud
Simon Fraser University

Justin Funston
Simon Fraser University

Abstract

Application virtual address space is divided into pages,
each requiring a virtual-to-physical translation in the
page table and the TLB. Large working sets, common
among modern applications, necessitate a lot of transla-
tions, which increases memory consumption and leads
to high TLB and page fault rates. To address this prob-
lem, recent hardware introduced support for large pages.
Large pages require fewer translations to cover the same
address space, so the associated problems diminish.

We discover, however, that on systems with non-
uniform memory access times (NUMA) large pages may
fail to deliver benefits or even cause performance degra-
dation. On NUMA systems the memory is spread across
several physical nodes; using large pages may contribute
to the imbalance in the distribution of memory controller
requests and reduced locality of accesses, both of which
can drive up memory latencies.

Our analysis concluded that: (a) on NUMA systems
with large pages it is more crucial than ever to use mem-
ory placement algorithms that balance the load across
memory controllers and maintain locality; (b) there are
cases when NUMA-aware memory placement is not suf-
ficient for optimal performance, and the only resort is to
split the offending large pages. To address these chal-
lenges, we extend an existing NUMA page placement
algorithm with support for large pages. We demonstrate
that it recovers the performance lost due to the use of
large pages and makes their benefits accessible to appli-
cations.

1 Introduction

Applications with large memory working sets require
many virtual-to-physical address translations in page ta-
bles and TLBs. This drives up physical RAM con-
sumption, increases TLB miss rate, and hurts perfor-
mance [1][2][10]. According to one report, a large Or-

Baptiste Lepers
CNRS

Alexandra Fedorova
Simon Fraser University

Jeremie Decouchant
Grenoble University

Vivien Quéma
Grenoble INP

acle DBMS installation with 500 concurrent connections
consumed 7GB of RAM for page tables alone! [5]. To
address this problem, most modern hardware and OS in-
troduced support for large pages. On x86 systems large
pages are typically 2MB (512 times larger than regularly-
sized 4KB pages), and support for 1GB pages is on the
way!. Using larger pages requires fewer translations to
cover the address space and diminishes the pressure on
the TLB and physical memory.

While large pages are so crucial for performance of
large-memory systems, they, unfortunately, also have
downsides. Previous work reported and addressed in-
creased memory footprints and physical memory frag-
mentation [13]. In this work, we report on a new prob-
lem: large pages hurt performance on NUMA systems.

Modern NUMA systems are comprised of several pro-
cessor nodes each containing a multicore CPU and a
local DRAM, all inside a single physical server. The
nodes are connected by the high-speed interconnect into
a cache-coherent system, forming an abstraction of a sin-
gle globally addressable memory. While CPUs can trans-
parently allocate and access the memory on any node,
accesses to remote nodes traverse the interconnect and
access a remote memory controller, incurring higher la-
tency and contributing to congestion on the interconnect.
To achieve good performance on NUMA systems, we
need to (1) maximize the fraction of memory accesses
going to local nodes and (2) balance the traffic across
the nodes and interconnect links. Unbalanced distribu-
tion of memory requests can increase the memory access
latency on the overloaded controller to as many as 1000
cycles, compared to about 200 cycles on a not overloaded
controller [6].

In this paper we show that large pages can exacer-
bate harmful NUMA effects, such as poor locality and
imbalance. Using large pages makes the unit of mem-

'1GB pages are already supported by the hardware; support by the
OS is still nascent, so few applications are able to use them at the time
of the writing.

ory management (a page) more coarse. As a result, it is
more likely that many frequently accessed memory ad-
dresses happen to map to the same physical page and
overload the memory node hosting it — the so-called kot
page effect. The hot-page effect cannot be addressed by
page migration and balancing; page splitting must be per-
formed prior to any attempts to rebalance memory. Like-
wise, large pages lead to more frequent page-level false
sharing among threads, where threads access different
data on the same page. False sharing leads to poor local-
ity, which cannot be addressed by page migration alone.

In this work we:

e Quantify the performance degradation due to large
pages on NUMA systems. We find that they affect
between 25% and 30% of applications in our bench-
mark set and cause degradations between 5% and
43%.

e Demonstrate that these performance losses are due
to NUMA factors, such as poor locality and imbal-
ance.

e Show that the problem can be addressed using a
combination of old and new techniques.

Our solution consists of two components: an existing
NUMA-aware page placement algorithm Carrefour [6],
and large-page extensions to Carrefour: Carrefour-LP.
For some of the affected applications Carrefour alone is
able to recover the lost performance, but in other cases
Carrefour is ineffective due to the hot-page effect and
page-level false sharing.

Even though hot pages and false sharing touched only
a couple of benchmarks in our set, these effects will be-
come pervasive on systems with much larger pages (e.g.,
1GB), which are becoming common. Therefore, we
implemented Carrefour-LP which addresses these prob-
lems by dynamically splitting large pages as needed.
For applications affected by hot pages and false shar-
ing, Carrefour-LP improves performance by 10%-80%
relative to Carrefour alone. Carrefour together with
Carrefour-LP significantly diminish or completely elim-
inate the performance degradation introduced by large
pages and improve performance of some applications by
2-3x relative to Linux with large pages.

The rest of the paper is structured as follows: Section 2
motivates the work by presenting performance effects of
using large pages on NUMA systems, Section 3 presents
the solution, Section 4 evaluates it, Section 5 discusses
related work, and lastly Section 6 summarizes the paper.

2 Large Pages and Adverse NUMA Effects

2.1 Experimental platform

For our experiments, we used two different server-class
machines. Machine A has two 1.7GHz AMD Opteron

6164 HE processors, with 12 cores per processor, and
64GB of RAM. The system is equally divided into four
NUMA nodes (i.e., six cores and 12GB of RAM per
node). Machine B has four AMD Opteron 6272 proces-
sors, each with 16 cores (64 cores in total), and 512GB
of RAM. It has eight NUMA nodes — 8 cores and 64GB
of RAM per node. Both machines have HyperTransport
3.0 interconnect links.

We are running on Linux 3.9 and are using Trans-
parent Huge Pages (THP) for large page allocation?.
THP works by backing allocations of anonymous mem-
ory with 2MB pages whenever possible. Other kinds of
memory, such as memory mapped files, are unaffected by
THP and use 4KB pages. THP also uses a kernel thread
to periodically scan for free memory regions that are at
least 2MB in size, which are then used to replace groups
of existing 4KB pages.

We used several benchmark suites representing a vari-
ety of different workloads: the NAS Parallel Benchmarks
suite which is comprised of numeric kernels, MapReduce
benchmarks from Metis, SSCA v2.2 (a graph process-
ing benchmark) with a problem size of 20, and SPECjbb.
From the NAS benchmark suite we picked the bench-
marks that ran for at least 15 seconds. The memory us-
age of the benchmarks ranges from 518MB for EP from
the NAS suite to 34,291 MB for IS from NAS.

2.2 Large Pages on Linux

Figure 1 compares the performance of 4KB pages and
2MB pages using THP. We can see that THP increases
performance (by up to 109%) for several benchmarks on
both machines (e.g. WC, WR, WRMEM, and SSCA),
but also significantly decreases performance by as much
as 43% in some cases. CG, UA, and SPECjbb are all
negatively affected by THP. Therefore, 2MB pages are
not universally beneficial and neither are 4KB pages, so
there is no “one size fits all.”

To understand this phenomenon, we recorded two
metrics that represent the potential benefits of large
pages: the number of L2 cache misses caused by page ta-
ble walks (obtainable from hardware performance coun-
ters), and the maximum time spent in the page fault han-
dler by any core. L2 misses due to page table walks is
a good indicator for the effect of TLB misses on per-
formance. We expect large pages to increase the TLB
coverage and reduce page table sizes. As a result, we ex-
pect the number L2 cache misses due to page table walks
to drop when we use large pages. Similarly, large pages
will reduce the number of page faults for allocations and

2Linux also allows using large pages via libhugetlbfs, but the latter
required recompiling applications and pre-allocating memory for large
pages, which was inconvenient, and, moreover, did not perform better
than THP in our experiments.

thus the time spent in the page fault handler.

We also monitored two metrics related to NUMA ef-
ficiency: the local access ratio (LAR), which is the per-
centage of accesses to local memory, and the traffic im-
balance on the memory controllers. Traffic imbalance
is defined as the standard deviation of the memory re-
quest rate across the controllers, expressed as the percent
of the mean. For memory intensive applications, a low
LAR and a high imbalance signify a NUMA issue.

Table 1 shows the profiling results for a subset of inter-
esting applications. As expected, applications that ben-
efited from 2MB pages in Figure 1 (WC and SSCA)
have fewer L2 misses due to page table walks, and for
WC significantly less time spent in the page fault han-
dler. The effects can be dramatic. For example, with
SSCA on machine A the percentage of L2 misses due
to page table walks is decreased from 15% to 2% when
using 2MB pages, which results in a 17% performance
increase. WC, which experiences a similar decrease in
L2 misses but also a large decrease in time spent on page
faults, has its performance increased more than two-fold
on machine B.

The two other profiled benchmarks — CG and UA -
perform much worse with 2MB pages. The profiling re-
veals that the degradation is caused by NUMA effects.
With CG and 4KB pages, the load on the memory con-
trollers is almost perfectly balanced, but with 2MB pages
the imbalance is 20% on machine A and 59% on machine
B. For UA, the problem is that the LAR decreases when
using large pages, from about 88% to around 66%.

SPEC;jbb presents an interesting case. While the data
in Figure 1 suggests that it does not benefit from large
pages, profiling reveals that using large pages actually
decreases the percent of L2 misses due to page table
walks. At the same time, SPECjbb suffers from NUMA
issues: the imbalance rises from 16% to 39% with large
pages. Therefore, SPECjbb could benefit from large
pages if NUMA effects were reduced.

3 Solutions

The previous section demonstrated that using large pages
may introduce NUMA issues, which may either degrade
performance relative to small pages (as they did for CG
and UA) or leave the performance unchanged but pre-
vent an application from enjoying the benefits of large
pages (as they did for SPECjbb). In this section we first
demonstrate that using a NUMA-aware page placement
algorithm eliminates the NUMA issues for some appli-
cations, motivating the use of NUMA-aware page place-
ment with large pages.

We then identify two new problems that a placement
algorithm unaware of large pages does not address: the
hot-page effect and the page-level false sharing. These

effects, while affecting only two applications in our ex-
periments, will become especially important as much
larger pages (e.g., 1GB) come into use. To address them,
we introduce large-page extensions (LP) to an existing
NUMA placement algorithm.

For clarity of presentation, from now on we will fo-
cus on those applications that experience NUMA issues
when large pages are used. Specifically, if the LAR or
the imbalance is made worse by more than 15% by using
large pages as opposed to small ones on either machine,
the application is selected for presentation, otherwise it
is omitted. The selected applications are: CG.D, LU.B,
UA.B, UA.C, matrixmultiply, wrmem, SSCA, SPEC;jbb.
For completeness, and to demonstrate that our solutions
do not hurt the applications they cannot help, we do in-
clude performance results for the excluded applications
at the end of Section 4.

3.1 Page balancing is not enough

We used a NUMA-aware page balancing algorithm Car-
refour, which was shown to perform better than other
similar solutions [6]. Carrefour works by gathering ac-
cess samples for memory pages and then choosing a host
node for a page based on the samples. If all of the sam-
ples for a page originated from a single node, then the
page is migrated to that node. If the samples came from
multiple nodes, then the page is interleaved (i.e. migrated
to a random node). Carrefour also includes thresholds
based on hardware counters, so that it is only enabled if
NUMA problems are detected such as when the local ac-
cess ratio is low or the imbalance on memory controllers
is high.

We ran Carrefour in the kernel configured with 2M
pages (Carrefour-2M). Figure 2 shows the performance
of Carrefour-2M compared to Linux with 2M pages (la-
beled as THP) relative to Linux with 4K pages (labeled
as Linux). We observe that while Carrefour-2M does im-
prove performance for some applications, it fails to solve
the problem across the board. For SPECjbb, Carrefour-
2M addresses the NUMA issue; as shown in Table 2 it
restores the balance on memory controllers that was in-
troduced by large pages and improves the LAR.

At the same time, Carrefour-2M fails to improve per-
formance for UA and CG. To understand why, we show
profiling data for these applications in Table 2. We report
five metrics: the percentage of total accesses to the most
used page (PAMUP), the number of hot pages (NHP)
defined as pages comprising more than 6% of the total
accesses®, the percentage of memory accesses to pages

3In order to perfectly balance the load on a 8-node NUMA ma-
chine, each node must be the target of 12.5% of the total memory ac-
cesses. Thus, we consider that if a page represents more than half of
this amount, it is likely to create imbalance.

(0]
2
T 30
5 oN
£ 20} 4
52 w01 11 -]
— I — - — DTN B IS —]
g= O - | B | m
03
(@ 88 A0 .
(0]
£8 -20 | S—
= THP —
59 30 S Oy O & A ¢ ¢ & 4 G 4, S
o~ SR YN) 8} X
& 0 QO O‘S’ : O 6 ‘6 ‘o © /))% % ? %9 ®Q<1 <,
s %, K
/o.
9
()
= 51
Eg 30
S 20 b .
[
&2 10F]
52 of - H_E1 R _ m B
(b) 8& 10 s
ES 205 THP —]
<2 .30 43
9] & O O S ¢ G b o b So S
o 20 QL TQ 2 9. 0 B 7, S8 R
® "o g 0 "0 O Te Ry e e o S, s, <o
s %, ” T
2y

Figure 1: THP performance improvement over Linux on (a) machine A and (b) machine B. THP sometimes perform

better than Linux, sometimes worse.

Perf. incr. Time spent in page fault % L2 misses due Local access Imbalance
THP/4k handler (% of total time) to page table walk ratio (%) (%)
(%) Linux THP Linux THP Linux | THP | Linux | THP
CG.D (B) -43 2182ms (0.1%) 445ms (0%) 0 0 40 36 1 59
UA.C (B) -15 102ms (0.2%) 53ms (0.1%) 0 0 88 66 14 12
WC (B) 109 8731ms (37.6%) | 3682ms (32.3%) 10 1 50 55 147 136
SSCA.20 (A) 17 90ms (0%) 147ms (0.1%) 15 2 25 26 8 52
SPECjbb (A) -6 8369ms (2.1%) 5905ms (1.5%) 7 0 12 15 16 39

Table 1: Detailed analysis of various application on machine A and B. The machine type is indicated in parentheses

next to the name of the benchmark.

shared by at least two threads (PSP), the percentage of
accesses to local memory (LAR), and the traffic imbal-
ance on the memory controllers.

The results for CG reveal that there is a hot page prob-
lem. Large pages cause the heavily accessed regions of
the address space to be coalesced into a small number of
hot pages (the PAMUP significantly increases), and be-
cause there are fewer hot pages than NUMA nodes it is
impossible to balance them.

UA does not have a hot page issue, but it does have
more pages that are shared among threads when large
pages are used (the PSP significantly increases). This
happens because each page holds more data and is thus
more likely to contain data used by multiple threads.
Since the threads do not share data, but share the page,
we refer to this problem as page-level false sharing.

Carrefour-2M is then forced to interleave these pages
whereas if there were less sharing the pages could be
placed on the nodes where they are most heavily used for
maximum locality. As a result, Carrefour-2M delivers a
lower LAR than Linux with small pages.

In summary, Carrefour-2M is only able to address
NUMA issues induced by large pages in cases where
they are not caused by the hot-page effect and page-level
false-sharing.

While these problems affected only two applications
in our experiments, they will become pervasive as pages
much larger than 2MB come into use. 1GB pages are al-
ready supported by the hardware; applications like large
DBMS clearly motivate their use [5]. We did not evaluate
1GB pages, because they are poorly supported in Linux.
1GB pages are not compatible with THP, and while in

o
=
T 30
5 oN
O); 0- - .- _--- T -
@ 88 -10r -
(] THP —
g-o -20 - Carrefour-2M — |
<2 .30
o C < & & 4. 4, Y Y
& OO ('/6’ B2 o @’5,;, %e \S\Qy /%\o.
4’(//,, K <0 “s
%y
o
= 51 46
%g 30
— X
&= of e g g — - —
g—g 20 b THP —
= o 43 40 Carrefour-2M
v+ -30
() C < < & 1. 4, \y \y
- o % T Yo %y, 7%, o %,
4’0/,,) "G
7o)

Figure 2: Performance improvement of Carrefour-2M and THP over Linux on applications whose NUMA metrics are
affected by THP (2MB pages). Carrefour-2M is not always able to solve the problems for applications that suffer from

THP.

theory it is possible to use them with lighugetlbfs, that
has many challenges. First of all, the implementation is
unreliable. We were not able to enforce the use of 1GB
pages with NAS applications and observed many crashes
with the Metis suite (because the latter uses a custom
memory allocator). Second, the splitting of large pages,
which is crucial to our solution, is not supported by lib-
hugetlbfs and implementing it would require a significant
effort.

However, since the use-case for very large pages is
definitely there, they will become more common as
the OS support improves. Then, the hot-page effect
and page-level false sharing will become more common
(Section 4.4 provides some preliminary data). To ad-
dress these problems, we propose large-page extensions
to Carrefour.

3.2 Carrefour-LP

Intuition suggests two basic solutions to the problem:
conservative — prevent the problem by only creating large
pages when necessary, or reactive — start with large pages
and fix NUMA problems when they are observed. Each
approach has potential benefits and drawbacks. The
conservative approach can avoid NUMA related perfor-
mance degradation but can also miss out on the benefits

Linux | THP | Carrefour
2M
PAMUP 2% 6% 6%
NHP 0 0 0
SPECjbb | PSP 10% | 36% 36%
Imbalance | 16% | 39% 19%
LAR 26% 28% 27%
PAMUP 0% 8% 8%
NHP 0 3 3
CG.D PSP 18% 34% 34%
Imbalance 0% 20% 20%
LAR 45% 45% 45%
PAMUP 6% 6% 6%
NHP 0 0 0
UAB PSP 16% | 70% 70%
Imbalance 9% 15% 17%
LAR 90% | 61% 58%

Table 2: Proportion of accesses to the most-used page
(PAMUP) in %, number of hot pages (NHP), proportion
of memory accesses to shared pages (PSP) in %, Imbal-
ance in % and local access ratio (LAR) in % for Linux,
THP and Carrefour-2M, on machine A (24 cores).

of large pages. On the other hand, the reactive approach

will benefit from large pages, but must be able to quickly
and accurately detect NUMA issues and must pay the
overhead of fixing them.

We found that a good algorithm must be a combina-
tion of these approaches. The reactive component of
our algorithm continuously monitors the hardware coun-
ters looking for the presence of NUMA effects under
large pages, applies the page balancing techniques of
Carrefour and splits the large pages if the latter are in-
effective. The conservative component of the algorithm
continuously monitors the virtual memory metrics and
re-enables large pages if they are expected to deliver ben-
efit but were previously disabled.

We also found that it is more practical and involves
less overhead to enable large pages in the beginning and
disable them later if they are deemed harmful. In particu-
lar, many applications have intensive memory-allocation
phases at the very beginning of the program that suffer
from lock contention if small pages are used.

Our full algorithm is presented in Algorithm 1.
Lines 4-9 corresponds to the conservative component,
the rest to the reactive component. The algorithm also
details the hardware counter metrics that are being mon-
itored. Since the monitoring is done continuously, the
algorithm caters to phase changes in applications. Below
we describe the rationale behind the decisions made in
the algorithm.

3.2.1 Reactive component

The job of the reactive component is to disable large
pages when they are harmful to the extent that even
Carrefour-2M’s page-balancing techniques cannot ad-
dress the performance degradation. To that end, it es-
timates the local access ratio (LAR), a vital metric for
detecting NUMA issues, with and without Carrefour and
large pages.

We use AMD’s instruction-based sampling (IBS)* to
sample memory accesses to pages, and to learn whether
the access was made from a local or a remote node. We
only consider pages that have at least one sample where
the access was serviced from DRAM, so that our deci-
sions are not affected by pages that are easily cached.
From the IBS samples, we estimate the LAR that would
be obtained if the shared pages were migrated to a ran-
dom node and if non-shared pages were migrated to the
local node (i.e. interleaving and migrating pages with
the Carrefour-2M algorithm). We also calculate the LAR
that would be obtained if the same technique were used
but with all of the 2MB pages split into 4KB pages.

Estimating the LAR for various what-if scenarios
(e.g., if a page were migrated or if large pages were split

“Intel systems have a similar facility called PEBS (Precise Event-
Based Sampling).

into regular-sized) is trivial with IBS samples. IBS gives
us data addresses and the node from which they were
accessed. So we can compute the current LAR as well
as the LAR that would be obtained if the pages where
placed on different nodes. Similarly, we can map the
data addresses to 4KB pages and compute the same met-
rics for the scenario if the large pages were split.

If, based on our estimates, the LAR can be improved
by 15% with Carrefour-2M only and without splitting the
pages, we simply run Carrefour-2M. Otherwise, if split-
ting pages would improve the LAR by at least 5%, then
all shared 2MB pages are demoted into 4KB pages. Note
that we are being cautious here: we try to address NUMA
issues by page migration first, and split pages only if ab-
solutely necessary. Splitting pages has overhead and may
hurt applications that need them — hence our decision. In
addition, large pages with more than 6% of the total ac-
cesses (hot pages, as defined in Section 3.1) are split and
the constituent 4KB pages are interleaved.

This part of the algorithm relies on two thresholds.
The first one is the 15% threshold used to decide whether
we can improve the LAR simply by rearranging memory
pages, without having to split large pages. That thresh-
old was relatively easy to set across applications: the key
is to use a relatively large number, since we want to be
rather confident that we can improve performance with-
out having to split pages. The second threshold, the 5%
performance gain that we expect from splitting pages,
needs to be any non-negligible number that would justify
the splitting. Again, that threshold was relatively easy to
tune across applications.

In the algorithm, we use the LAR computed per-
application. Another option would be to use the LAR
computed per-page, however this was difficult to do, be-
cause existing hardware monitoring facilities prevent us
from obtaining enough samples to accurately compute
per-page LAR (and even per-application LAR as ex-
plained in the next section). This is why the algorithm
splits all 2MB pages when it detects the LAR can be im-
proved.

3.2.2 Conservative component

The job of the conservative component is to re-enable
large pages when they have been disabled but monitoring
shows that they would be beneficial again. The conserva-
tive component uses two criteria to determine the benefit
of large pages: the performance impact of TLB misses
(based on the fraction of L2 misses caused by page table
walks) and the maximum percentage of time any core
spends processing page faults. The reason why we con-
sider the time spent processing page faults is that large
pages improve performance by decreasing this time. In-
deed, soft page faults not only take CPU time, but also

Algorithm 1 Large-page Extensions to Carrefour
1: Enable 2MB page allocation and promotion
2: while true do
3: Gather hardware performance counters and IBS
samples for 1 sec
if L2 misses due to page table walks > 5% then
Enable 2MB page allocation
Enable 2MB page promotion
else if Max time spent on page faults > 5% then
Enable 2MB page allocation
end if
10: if Estimated LAR improvement with only Car-
refour > 15% then
11: SPLIT_PAGES = false
12: else if Estimated LAR improvement with Car-
refour and splitting pages > 5% then

B AN

13: SPLIT_PAGES = true

14: end if

15: if SPLIT_PAGES = true or 2MB page allocation
is disabled then

16: Split all shared 2MB pages into 4KB pages

17: Disable 2MB page allocation

18: end if

19: Split and interleave 2MB hot pages
20: Interleave and migrate pages with Carrefour
21: end while

incur costly synchronization [3]. The latter is the reason
why we use the maximum fraction as opposed to the av-
erage: lock contention will be determined by the slowest
core that holds page table locks.

The conservative component works as follows. If the
impact of TLB misses is estimated to be greater than a
threshold of 5%, then 2MB page allocation and 2MB
page promotion® are both enabled via THP. Similarly, if
the time spent in the page fault handler was more than
a threshold of 5%, then 2MB page allocation is enabled
but not 2MB page promotion, since there is little benefit
in promoting the pages on which we had already paid the
cost of page faults.

In order to estimate the impact of TLB misses on per-
formance, we use the fraction of L2 cache misses due
to page table walks. This assumes that TLB misses pri-
marily degrade performance when a page table traversal
causes an L.2-cache miss (in that case, the miss is satis-
fied either from the L3 cache or from the DRAM, both
of which are costly), and that the application’s perfor-
mance is dominated by L2 cache misses. Although this
is a coarse approximation, it works well because appli-
cations that experience a lot of cache misses due to page

SPage promotion refers to dynamic consolidation of regular-sized
pages into large pages. It is supported by the default Linux kernel. We
set the frequency for page promotion checks to every 10ms.

table walks are those with large page tables. This implies
that they have large memory footprints, and so they are
memory-intensive. Therefore, it is safe to assume, for
these applications, that variations in performance can be
primarily explained by the number of L2 cache misses.
Conversely, applications with a very small fraction of
L2 cache misses resulting from page table walks are not
memory-intensive, so for them the impact of TLB misses
is negligible.

4 Evaluation

4.1 Performance evaluation

Figure 3 shows performance of Carrefour-LP and THP
relative to Linux with 4K pages. We continue focusing
only on the applications affected by NUMA issues; the
remaining applications are presented for completeness in
Figure 5. Figure 3 shows that Carrefour-LP:

e restores performance of applications that suffered
under large pages and do not stand to benefit from
them: CG.D, UA.B, UA.C,

e improves performance of applications that were ex-
pected to benefit from THP but did not (or did not
benefit fully): SSCA and SPECjbb, both on ma-
chine A,

e does not significantly hurt performance of the appli-
cations where NUMA effects did not cause perfor-
mance degradation under large pages and where no
performance improvements from large pages were
expected (the remaining applications).

We next provide the detailed analysis of Carrefour-
LP. We analyze the contribution to performance improve-
ments of its three components: Carrefour-2M, conserva-
tive and reactive. We demonstrate when and why it is suf-
ficient to just use Carrefour-2M alone and explain how
both conservative and reactive components contribute to
the solution. The performance breakdown is shown in
Figure 4.

Workloads other than CG.C, UA.B and UA.C are not
affected by the hot-page effect and page-level false shar-
ing, so in these cases Carrefour-LP performs similarly to
Carrefour-2M alone. It is able to meet the performance
of Carrefour-2M with minimal overhead (at most 3.7%
on machine A and 2.1% on machine B).

Table 3 demonstrates that Carrefour-LP eliminates the
hot-page effect and page-level false sharing and im-
proves NUMA metrics where Carrefour-2M fails. For
UA, the LAR drops from about 90% to roughly 60% un-
der THP and remains at that low level under Carrefour-
2M. Carrefour-LP is able to restore it almost to the pre-
vious level by dynamically splitting pages.

OF o gl eI M _

20 e THP |
Carrefour-LP

-

(a)

to default Linux (%)
5
T
N e

|

0

|

1

|
1

Perf. improvement relative

RS “, 4 % % %, ‘%*C% %“o
% K ~® s

30 51 46

ok D o m SO [.D_

43 Carrefour-LP 3

%, < 2 & 1

(b)

to default Linux (%)

Perf. improvement relative

% <<‘
<
S
+47</ K 7“30 966

Figure 3: Performance improvement on a reduced set of applications of THP and Carrefour-LP over Linux, on (a)
machine A and (b) machine B.

(] S R —— e i I i
II . Carrefour 2M
-10 oo Conservative N
Reacllve:],
Carrefour-LP C——

(a)

to default Linux (%)

Perf. improvement relative

—— = I-DD]
= -DD —— = Carrefour 2M

(b) Conservauve—'

0 T e Y i e B Reactive 0 |

-40 Carrefour-LP C——1

to default Linux (%)

=

o O

T T

[

]

|

|

\

Perf. improvement relative

Figure 4: Performance improvement on a reduced set of applications of Carrefour-2M, the conservative component,
the reactive component and Carrefour-LP over Linux with THP, on (a) machine A and (b) machine B.

For CG.D, enabling large pages disturbs the perfect
memory-controller balance enjoyed under small pages.
Carrefour-2M is unable to restore it, while Carrefour-LP
restores it almost entirely.

We now analyze the importance of the two compo-
nents in Carrefour-LP. Figure 4 presents the performance
obtained when running Carrefour-2M alone (labeled as
Carrefour-2M), Carrefour-2M with the reactive compo-
nent designed for Carrefour-LP (labeled as Reactive), the
original Carrefour runtime (working on 4kB pages) to-
gether with the conservative component (labeled as Con-
servative), and Carrefour-LP (labeled as Carrefour-LP).
Figure 4 shows that in all cases, enabling the two compo-
nents (as done in Carrefour-LP) is always the best choice
(or close to the best). The conservative component alone
does not solve the problem, because it begins with 4K
pages. For SPECjbb, for example, it does not detect the
need for large pages soon enough, so the performance
is not as good as it could be. We similarly observed
that using the conservative component alone hurts per-
formance of many applications that were not included in
this analysis (but shown in Figure 5) for the same rea-
son: large pages were not enabled soon enough. These
applications have an intense memory allocation phase at
startup, which can benefit greatly from large pages due to
fewer page faults, but the conservative component does
not enable large pages soon enough.

Using the reactive component alone works well on
some applications. For CG.D, it is able to detect the “hot
page” and split it. Similarly, it is also able to split the
falsely shared pages for UA.B and UA.C. However, on
some applications, it fails to bring the maximum perfor-
mance improvement that can be achieved with 2M pages
(e.g. SSCA on machine A and SPECjbb on machine B).
The reason is that the LAR is sometimes misestimated,
and this results in 2M pages being split in applications
that do not suffer from NUMA issues. For instance, on
SSCA, the algorithm predicts a LAR of 59% if large
pages were all split into 4k pages, whereas the actual
LAR obtained after splitting is equal to 25%.

The problem is, in order to estimate the LAR under
regular-sized pages given the data samples collected un-
der large pages, we need to have enough samples on the
constituent sub-pages. Unfortunately, we found it to be
very difficult to gather enough samples; increasing the
sampling rate results in unacceptably high overhead. A
promising solution would be to use Lightweight Profil-
ing (LWP). LWP is an extension of AMD processors
that aims at providing the same level of details as IBS
with less overhead. To reduce the overhead, LWP stores
samples in a ring buffer and only interrupts the proces-
sor when the buffer is full. Unfortunately, on available
AMD processors, LWP is only partially implemented:
LWP samples only contain the instruction pointer of the

sampled instruction and a timestamp. This information
is not sufficient to predict LAR.

Because of these deficiencies in hardware profiling,
the reactive component may make mistakes in deciding
when to split large pages. This is where the conservative
component comes to the rescue and re-creates the large
pages when they are expected to help.

We conclude this section by explaining some perfor-
mance results in Figure 5, which contains applications
where THP did not create any NUMA issues. The key
observation is that the overhead of Carrefour-LP does
not significantly hurt these applications. Moreover, EP.C,
SP.B and pca enjoy better (sometimes much better) per-
formance with Carrefour-LP than with THP. That is be-
cause they had NUMA issues to begin with (which were
not exacerbated by large pages), and so the Carrefour-2M
component of the algorithm helped to address them.

4.2 Overhead assessment

Overhead in Carrefour-LP comes from collecting and
storing IBS samples, computing the metrics based on
these samples, migrating and splitting pages. Overall,
the overhead of Carrefour-LP compared to the reactive
approach is negligible: between 1% and 2% on all ap-
plications (on all machines) except CG (3.2%) and IS
(2.1%) on machine B. Even on these two applications,
the overhead is still within the standard deviation.

Compared to Carrefour-2M, the overhead is also
small. The maximum overhead observed is 3.7% on ma-
chine A (SP.B) and 3.2% on machine B (LU.B), but on
average it is below 2%.

Compared to Linux with 4k pages, Carrefour-LP has
an overhead of less than 3%, except on FT, IS (ma-
chine A) and LU (machine B). This overhead is not spe-
cific to Carrefour-LP but is rather caused by Carrefour-
2M, which spends too much time migrating large pages.
Since our solution is built on top of Carrefour-2M, it also
suffers from the same overhead.

4.3 Discussion

Our assessment of efficacy and downsides of Carrefour-
LP is as follows.

The solution could be much improved if we had a
more accurate way of estimating the LAR. Currently,
with inaccurate estimates, the solution may split and mi-
grate pages when there is no benefit to be gained, which
is why Carrefour-LP degrades performance of LU by
3.5% compared to Carrefour-2M. We believe that the
LAR could be predicted more accurately if we could col-
lect more data samples without additional overhead. A
complete implementation of LWP (i.e., if LWP provided

Local Access ratio (%) Imbalance (%)
Default | THP | Carr. | Carr. LP || Default | THP | Carr. | Carr. LP
Linux 2M Linux 2M
CG.D (B) 40 36 38 39 1 59 69 3
UAB (A) 90 61 58 85 9 15 17 10
UA.C (B) 88 66 68 82 14 12 9 14

Table 3: NUMA metrics for CG.D on machine B, UA.B on machine A, and UA.C on machine B.

89 74

o 30
=
%g 20 -
QE’E
. e— —_ w1 W . . e |
O 0 — . — —
@ 83 = u u
E'E -10 e
Eo
-:'49 -20 - THP |
é_) Carrefour-LP
-30
S < D N) % DN 4, 4, 1 <
R Q—y o o kY QO & s » /%% R
2
78 217 105;00 7063 66
® 30
=
gg 20 R B S
C
25 L D el /bl e
= | (]
® 3835 |
E_“q—, -10 —
ko]
<8 -20 THP —
él_J Carrefour-LP ———1
-30
Ex Q & DN 4 1, DY 2 4, 1, s
O o o 0 % o C L N
%

Figure 5: Performance improvement of THP and Carrefour-LP over Linux on applications whose NUMA metrics are
not affected by THP, on (a) machine A and (b) machine B.

the same kind of samples as IBS) would solve this prob-
lem.

Our earlier implementation had scalability issues on
the system with 64 cores. The reason was that the cen-
tralized data structure where we stored IBS samples had
to be accessed and locked from multiple nodes. We ad-
dressed this problem by maintaining a data structure per
node. The per-node structures are still accessed by mul-
tiple cores, so we may need to revisit this scaling issue
on larger machines. Overall, the algorithm is likely to
scale well because all work generated by an interrupt is
performed independently on each node, so the number of
nodes can grow without creating scalability bottlenecks.

Splitting pages did not create too much overhead, but
the use of the page table lock for THP operations is
clearly a scalability concern. Linux developers are work-

10

ing on finer grain locks at the time of the writing, so we
hope that this problem will be avoided.

We did not observe many oscillations, where we go
back and forth between splitting and enabling large
pages. Overall, Carrefour-LP seems to be the more
robust than the conservative and the reactive compo-
nents used independently, because it naturally supports
transient states and phase changes by continuously re-
examining its decisions.

4.4 Very Large Pages

Although accessing the very large 1GB pages via lib-
hugetlbfs proved challenging for most applications, we
were able to enable them in SSCA and in streamclus-

ter (an application from PARSEC)®. We immediately ob-
served the hot-page and page-level false-sharing prob-
lems. With 1GB pages, lots of hot small pages were co-
alesced on a single NUMA node, and the performance
dropped dramatically. For SSCA it degraded by 34%; for
streamcluster by a factor of 4. Neither of these applica-
tions suffered performance degradation when 2M pages
were used. Although preliminary, these data suggest a
much more pervasive presence of NUMA issues when
very large pages are used, and so Carrefour-LP will be-
come even more important in the future.

5 Related Work

5.1 Large pages and TLB performance

Several studies have characterized the effect of TLB
misses and large pages [2][10][15][14][7]. Battachar-
jee and Martonosi [2] specifically looked at the effect
of TLB misses on multicore systems with multithreaded
workloads. They found that some applications, such as
Canneal from the PARSEC benchmark suite, spend up
to 0.7 cycles per instruction on servicing D-TLB misses.
Another study [10] showed performance improvements
of up to 25% in the NAS benchmark suite due to using
large pages. For large-scale HPC applications, Zhang et
al. [15] found that large pages improve communication
performance significantly.

Weisberg and Wiseman [14] used the SPEC CPU2000
benchmarks to evaluate the relationship between page
size and the number of TLB misses. They argue that a
4KB page size is much too small for most applications,
and conclude that a page size of 256KB and a 64-entry
TLB is sufficient to drastically reduce the number of TLB
misses.

Sudan et al. [12] motivate the need for small pages.
They show that using 1KB pages allows optimizing the
usage of the DRAM row-buffer, yielding substantial en-
ergy savings and decreasing the average latency of mem-
Ory accesses.

All these works motivate the use of different page
sizes, but none of them highlight or quantify the impact
of NUMA on the performance obtained when using dif-
ferent page sizes.

5.2 Large page support and optimization

Many software systems have been designed that make
large pages easier to use or more effective.

Navarro et al. [9] described an algorithm for operating
system support of large pages that reduces fragmenta-

5The PARSEC suite was not included in our study, because its ap-
plications did not experience performance differences under THP with
2M pages.

11

tion and does not require memory copies to create large
pages. Using their algorithm, a page fault reserves a
physical memory region of the size of a large page, but
it initially only allocates and maps a small page. Subse-
quent page faults use the reserved space until it has been
completely allocated, at which point the region is pro-
moted to a large page. The algorithm does not attempt to
optimize the placement of large pages.

Cascaval et al. [4] developed a model to predict the
benefit of using large pages on individual data structures
of applications, based on the predicted number of TLB
misses and page faults. The predictions are computed
using hardware counters throughout multiple runs of the
application. The data structures that are predicted to ben-
efit the most from large pages are backed by large pages.
A similar method is described in [11], with the major dif-
ference being that large page promotions are performed
at runtime.

Magee and Qasem [8] also devised a system for re-
stricting the usage of large pages to applications that ben-
efit the most from them. At compile-time, the working-
set size is estimated through static analysis. If the es-
timated working-set size is greater than the coverage of
the target CPU’s TLB, then large pages are used.

A different approach is explored by Basu et al. [1].
Instead of managing the use of large pages at the OS
level, they propose a hardware extension that allows ap-
plications to directly map memory segments. Addresses
within directly mapped segments bypass the TLB and so
translation is nearly free. The segments are conceptually
similar to very large pages and provide similar benefits,
but the authors do not analyze the potential NUMA ef-
fects which would be exacerbated by the large size of the
segments.

In summary, previous works mostly focused on the
limited availability of large pages and on reducing mem-
ory fragmentation. Several systems have been designed
to ensure that applications that benefit from large pages
actually use them, but no existing work has revealed and
addressed the NUMA issues raised by large pages.

6 Conclusion

We demonstrated that using large pages can create or
exacerbate NUMA issues like reduced locality or im-
balance. We showed that these problems can be in
some cases addressed by using a NUMA-aware page
placement algorithm, but the latter stumbles upon two
problems: the hot-page effect and page-level false shar-
ing, which cannot be addressed via page migration.
To address these problems, we implemented Carrefour-
LP: large-page extensions to the NUMA-aware page
placement algorithm Carrefour. Our results show that
Carrefour-LP restores the performance when it was lost

due to large pages and makes their benefits accessible to
applications.

Solutions like Carrefour-LP will be even more impor-
tant in the future, when very large pages (1GB in size)
will be in widespread use.

References

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

BAsU, A., GANDHI, J., CHANG, J., HILL, M. D., AND SWIFT,
M. M. Efficient virtual memory for big memory servers. In Pro-
ceedings of the 40th Annual International Symposium on Com-
puter Architecture (2013), ACM, pp. 237-248.

BHATTACHARIJEE, A., AND MARTONOSI, M. Characterizing
the TLB Behavior of Emerging Parallel Workloads on Chip Mul-
tiprocessors. In Proceedings of the 18th International Conference
on Parallel Architectures and Compilation Techniques (2009),
PACT °09, pp. 29-40.

BOYD-WICKIZER, S., CLEMENTS, A. T., Mao, Y.,
PESTEREV, A., KAASHOEK, M. F., MORRIS, R., AND ZEL-
DOVICH, N. An analysis of linux scalability to many cores.

CASCAVAL, C., DUESTERWALD, E., SWEENEY, P. F., AND
WISNIEWSKI, R. W. Multiple page size modeling and opti-
mization. In Parallel Architectures and Compilation Techniques,
2005. PACT 2005. 14th International Conference on (2005),
IEEE, pp. 339-349.

CLOSSON, K. Quantifying Hugepages Mem-
ory Savings with Oracle Database 11g, July 2009.
http://kevinclosson.wordpress.com/2009/07/28/quantitying-
hugepages-memory-savings-with-oracle-database-11g/.

DAsHTI, M., FEDOROVA, A., FUNSTON, J., GAUD, F.,
LACHAIZE, R., LEPERS, B., QUEMA, V., AND ROTH, M. Traf-
fic management: A holistic approach to memory placement on
numa systems. In Proceedings of the eighteenth international
conference on Architectural support for programming languages
and operating systems (2013), ACM, pp. 381-394.

GORMAN, M., AND HEALY, P. Performance characteristics of
explicit superpage support. In Computer Architecture (2012),
Springer, pp. 293-310.

MAGEE, J., AND QASEM, A. A case for compiler-driven su-
perpage allocation. In Proceedings of the 47th Annual Southeast
Regional Conference (2009), ACM, p. 82.

NAVARRO, J., IYER, S., DRUSCHEL, P., AND COX, A. Prac-
tical, Transparent Operating System Support for Superpages. In
Proceedings of the 5th Symposium on Operating Systems Design
and Implementation (2002), OSDI 02, pp. 89-104.

NORONHA, R., AND PANDA, D. K. Improving scalability of
openmp applications on multi-core systems using large page sup-
port. In Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International (2007), IEEE, pp. 1-8.

ROMER, T. H., OHLRICH, W. H., KARLIN, A. R., AND BER-
SHAD, B. N. Reducing tlb and memory overhead using online
superpage promotion. In Computer Architecture, 1995. Proceed-
ings., 22nd Annual International Symposium on (1995), IEEE,
pp. 176-187.

SUDAN, K., CHATTERJEE, N., NELLANS, D., AWASTHI, M.,
BALASUBRAMONIAN, R., AND DAVIS, A. Micro-pages: in-
creasing dram efficiency with locality-aware data placement. In
Proceedings of the fifteenth edition of ASPLOS on Architec-
tural support for programming languages and operating systems
(2010).

12

[13]

[14]

[15]

TALLURI, M., KONG, S., HILL, M. D., AND PATTERSON,
D. A. Tradeoffs in supporting two page sizes. In Computer Ar-
chitecture, 1992. Proceedings., 19th Annual International Sym-
posium on (1992).

WEISBERG, P., AND WISEMAN, Y. Using 4kb page size for
virtual memory is obsolete. In Information Reuse & Integration,
2009. IRI’09. IEEE International Conference on (2009), IEEE,
pp. 262-265.

ZHANG, P., LI, B., HUO, Z., AND MENG, D. Evaluating the
effect of huge page on large scale applications. In Networking,
Architecture, and Storage, 2009. NAS 2009. IEEE International
Conference on (2009), IEEE, pp. 74-81.

