
IBD – Intergiciels et
Bases de Données

RMI-based distributed systems

Fabien Gaud, Fabien.Gaud@inrialpes.fr

http://www-ufrima.imag.fr/  Placard électronique  M1 Info  IBD

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 2

Overview of lectures and practical work

 Lectures
 Introduction to distributed systems and middleware
 Socket-based distributed systems
 RMI-based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services

 Practical work
 Programming distributed systems with Sockets
 Programming distributed systems with RMI
 Programming distributed systems with Servlets
 Project on multi-tier Internet services

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 3

Motivations

 Sockets are a simple and flexible technology for data
communication in distributed systems

 Sockets are restricted to the transmission of data

 Sockets say nothing about the semantics of transferred data

 Application-level protocols provide the semantics

 Often time-consuming and error-prone to develop

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 4

Remote Procedure Call (RPC)

 Old technology – Still in use

 Developed in the 80s, for procedural languages
 Integrates transparently remote calls into the language

 Remote definition

 Across address spaces
 Across networks

 Technical issues for implementing RPC

 Different address spaces
 Heterogeneous machines

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 5

RPC challenges

 Local Procedure Call (same address space)

 Arguments are either passed as a pointer or a value
 Pointers refer to physical memory addresses
 Values are primitive types (int, float, long, double, etc.)

 Remote Procedure Call (different address spaces)

 Pointers are only valid within one address space
 Pointed-to data must be copied across address-space boundaries

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 6

RPC challenges (2)

 Heterogeneous machines

 In communication between heterogeneous computer
architectures, the internal representation of data on another
computer may not be the same as on the original computer

 Data sent in remote procedure calls must be converted into a
platform-independent data format (e.g. XDR – eXtensible Data
Representation)

 Data received in remote procedure calls must be converted back
into an internal representation of the receiver’s side

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 7

RPC versus RMI

 RPC Limitations

 The naming of RPC destinations (IP, port)
 Copy-only semantics for arguments

 RMI

 Suited for Object Oriented Programming Languages (OOPL)
 Use object identity to “name” the destination of the invocation
 Can pass “objects” by value or reference

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 8

Object oriented programming

 Objects
 Object identity (unique)
 Object state (data)

 Classes

 A class is a factory for its instances (objects)
 A class defines the structure of its instances
 Classes define the methods available on objects (behavior)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 9

Object oriented programming

 Interfaces
 Interfaces are abstract classes

 Interfaces define a contract as a behavior (methods)
 A client-server pattern

 The server class implements the interface
 The client class invokes methods of the interface

Server
Object

provides

Client

Server

Client
Object

abstract
contact

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 10

Outline

 Motivations

 A simple example

 The architecture of RMI

 A detailed example step by step

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 11

Java Virtual Machine

Simple Example

 Weather station

 You just bought a weather station for your week-end house
 It provides a Java package to access the weather sensors

 Temperature
 Wind speed and direction

WeatherStation

provides

Client

Server

AllLocalDisplay

IWeatherStation

AllLocalDisplay

AllLocalDisplay

WeatherStation

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 12

Simple Example

 Looking at the source

 The all-local case...

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 13

Simple Example

 Planning your week-ends

 You would like to read the information from your office...
 How do you access it?

 Problem: object references are only local to a JVM

Java Virtual Machine

WeatherStation

AllLocalDisplay

Java Virtual Machine

SimpleClient ?

On your office laptop... On your old desktop
in your week-end house...

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 14

JVM JVMJVM

A simple example

 What we need

 A way to refer to a remote object in a different JVM
 The ability to remotely invoke methods

thread stack remote
invoke

remote
reference

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 15

A simple example

RMI server

 Creates a remote server...

 Need a process that hosts the Java Virtual Machine

 Hosts one or more remote objects

 Each remote object
 Instance of a class that implements one or more Remote interface

Server process

Remote
Objects

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 16

A simple example

Registry

RMI server

 Naming the remote object

Server
Object

Server process

Skeleton

Stub

“Hello”

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 17

A simple example

RMI client

 Client looks up the name

RMI server

Skeleton
Server
Object

Server process

Stub

Registry
Stub

“Hello”

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 18

A simple example

 Client invokes methods on the remote object

 Does not involve the registry anymore
 Goes directly through stubs and skeletons

 Parameters are marshalized back and forth
 Strings are passed by value (copied)
 More on this later...

RMI serverRMI client

Server
Object

requests

responses

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 19

Simple Example

 Looking at the source

 The making of an RMI server
 The naming of a remote object
 The lookup of that remote object by a client
 The use of that remote object by a client

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 20

Outline

 Motivations

 A simple example

 The architecture of RMI

 A detailed example step by step

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 21

RMI Architecture

TCP/IP

RMI transport layer

RMI reference layer

Stub Skeleton

Client Server

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 22

RMI Architecture

 The stub and skeleton layer in RMI

 Stub
 Offers the same remote interfaces as the remote object
 Marshalls method arguments in a message

 Skeleton
 Receives messages from the stub

 Forwards calls to the server object
 Waits for results

 Sends results back to the stub

TCP/IP

RMI transport layer

RMI reference layer

Stub Skeleton

Client Server

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 23

RMI Architecture

 The reference layer in RMI

 Manages stubs and skeletons
 Dispatch messages on skeletons
 Worker thread selection

 Includes the name service (the registry)
 Includes distributed garbage collection

 The transport layer in RMI

 It manages communication connections
 Either over TCP/IP or HTTP

 It must not be confused with the
network transport layer (e.g. TCP/IP)

TCP/IP

RMI reference layer

Stub Skeleton

Client Server

RMI transport layer

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 24

RMI Architecture

 Multi-threaded execution model

 Server objects may be invoked from several clients
 Method invocations happen in parallel

 Server objects must be developed assuming multiple threads
 Use synchronized methods
 Use synchronized blocks

 RMI thread pool

 Manages a pool of threads
 Pick one thread to carry one invocation

RMI
server

Server
Object

requests

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 25

RMI server

RMI Architecture

 Thread pool details

request queue

main thread

worker thread

work_to_do

request
dispatcher

Client
Requests

worker thread
worker thread

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 26

About invocations

 Coming back on our simple example

 Remote references are accessible through stubs and skeletons
 What about remote invocations?

 How are the integer values passed around?
 How are the strings passed around?

JVMJVM

... remote
invoke ?

remote
reference

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 27

Argument semantics

 Two semantics

 By-value or by-reference
 By-value means a copy
 By-reference means no copy

 Applies to arguments and to returned results

 Primitive types

 They are boolean, byte, char, short, int, float, double
 Always marshalled by value through stubs and skeletons

 What about objects?

 Can be either by-value or by-reference...

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 28

Argument semantics

 Objects by-value

 Any object which is “serializable”
 The class of the object implements java.io.Serializable

 Copy semantics
 Deep copy... yields two objects: both on server and client sides
 Updates impact only the local copy

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 29

Argument semantics

 Objects by-value

 An example – a simple method returning a reference

invoke
Server
Object

Client
Object

return

Server
Object

Client
Object

public Object getObject();

is serializable

made a copy

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 30

Argument semantics

 Serialization

 Deep copy
 Recursive depth-first copy of an object graph from a root
 If any object encountered is not serializable, an exception is thrown

 Cycles are properly handled

root rootdeep copy

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 31

Argument semantics

 Serialization

 Individual object copy
 By default, all instance fields are copied
 Except for instance fields that are declared transient

 Attention
 Static fields are part of the class
 Not part of the instances of that class

root rootdeep copy

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 32

Argument semantics

 Java Runtime Environment

 Most JRE classes are serializable
 Their instances will be passed by value

 Examples

 Java collections such as hash tables or vectors
 String objects
 Arrays are serializable objects

 Some classes are not serializable

 Only make sense locally, such as files, sockets, threads, etc.

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 33

Back to our example

 Marshalling

 Integers passed by-value as arguments and return values
 String objects are passed by-value

 Improving performance

 Reducing the number of remote method invocations
 One remote invocations per information

 Introducing an WeatherData object
 Gathers all weather information
 Passed by-value, so it implements serializable

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 34

Argument semantics

 Objects by-reference

 All objects whose classes implement Remote interfaces
 A remote interface extends java.rmi.Remote

 Creates a stub-skeleton chain
 Carries method invocations up to the remote object
 Marshalling and unmarshalling arguments along the way
 Changes appear in the remote object

requests

responses

Server
Object

Client
Object

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 35

Argument semantics

 Objects by-reference

 An example – a simple method returning a reference

invoke
Server
Object

Client
Object

return

Server
Object

Client
Object

public Object getObject();

is a remote object

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 36

Back to our example

 Introduce weather stats

 We want to log weather information
 We introduced a logger object

 It collects periodically the weather information
 It is a remote object that gives the last set of weather information

 Impacts on the code

 Introduces a new interface, a new class, and a new remote object
 The remote object is a UnicastRemoteObject
 It is not named however
 It is returned by reference from a method on the weather station object

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 37

Distributed Garbage Collection

 Local garbage collection

 Java is a garbage collected language
 An object is garbage when it is no longer reachable from roots
 Roots are thread stacks and class statics

 The garbage collector detects and recycles garbage objects
 This is done automatically and periodically

root root

Garbage
Collection

root

X

Cut a reference

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 38

Distributed Garbage Collection

 Distributed garbage collection

 Natural extension to the local case
 If a stub is reachable, so is the skeleton
 If the stub is reachable, so is the remote object

Remote
Object

client
object

root

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 39

Distributed Garbage Collection

 Distributed garbage collection

 The RMI registry is a root
 Named objects are reachable and not garbage collected

Remote
Object

client
object

root

Registry
Stub

“Hello”

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 40

Where are classes ?

 Back to our example

 Which classes are needed by

 The server ?
 The client ?

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 41

Where are classes ? (2)

 Client / Server must have

 Interfaces for remote objects
 Implementation for serializable objects

 Code downloading

 Clients and/or servers may fetch unknown classes
 Various protocols can be used (http, ftp, ...)
 Uses a codebase (= path or URL)

Example

java ...
 -Djava.rmi.server.codebase=http://mywebsite.com/classes/compute.jar
 ...
 myServer

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 42

Outline

 Motivations

 A simple example

 The architecture of RMI

 A detailed example step by step

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 43

A detailed example step by step

 Main steps to create a distributed application with RMI:

Compile the source filesCompile the source files

Start the RMI registry

Implement the client programImplement the server program

Start the clientStart the server

Implement the remote object

Define the remote interface provided by the remote object

Client sideServer side

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 44

Application design

 Determine application architecture

 Which components are local objects
 And which components are remotely accessible
 What components are servers (creators of remote objects) and which

are clients (accessors to remote objects)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 45

Remote Interface

 Define remote interfaces

 A remote interface specifies the methods that can be invoked remotely
by a client on remote objects

 Determine types of objects that will be used as parameters and return
values for these methods
 Using copy
 Using reference

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 46

Remote interfaces

 Define the remote interface provided by the remote object:
 Extends java.rmi.Remote
 Each method must declare java.rmi.RemoteException

import java.rmi.Remote;
Import java.rmi.RemoteException;

public interface Hello extends Remote {

// A method provided by the remore object
public String sayHello() throws RemoteException;

}

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 47

Remote objects

 Implement the remote object in a class:
 Declare the remote interface being implemented
 Implement the set of methods that can be called remotely
 Implement any other local method that can not be invoked

remotely

Import java.rmi.RemoteException;

public class HelloImp implements Hello {
private String message;

 public Hello(String s) {
message = s ;

}

public String sayHello () throws RemoteException {
return message ;

}
}

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 48

Remote objects (2)

 Implement the remote object in a class

 Objects passed to or returned from remote methods must be
Serializable or Remote

 Remember: each method must declare a RemoteException

 May extend UnicastRemoteObject for creating stub automatically
otherwise stub must be manually created

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 49

Server side

 Implement the server program:

 Create and install a security manager
 Create remote objects
 Eventually create a stub
 Register remote objects with the RMI registry

import java.rmi.server.UnicastRemoteObject;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;

public class HelloServer {
 public static void main(String [] args){
 try {

 if (System.getSecurityManager() == null) { System.setSecurityManager(new SecurityManager());}
 HelloImp h = new HelloImp ("Hello world !");
 Hello h_stub = (Hello) UnicastRemoteObject.exportObject(h, 0);
 Registry registry= LocateRegistry.getRegistry();
 registry.bind("Hello1”, h_stub);

 } catch (Exception e) {
 System.err.println("Error on server :" + e) ; e.printStackTrace(); return;
 }
 }
}

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 50

Client side

 Implement the client program:

 Create and install a security manager
 Get a remote object reference
 Perform remote method invocations on the remote object

import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;

public class HelloClient {
 public static void main(String [] args) {
 if (args.lenght < 1) { System.out.println("Usage: java HelloClient <server host>"); return; }
 try {

if (System.getSecurityManager() == null) { System.setSecurityManager(new SecurityManager()); }
String host = arg[0];
Registry registry = LocateRegistry.getRegistry(host);
Hello h = (Hello) registry.lookup("Hello1");
String res = h.sayHello(); System.out.println(res);

 } catch (Exception e) {
 System.err.println("Error on client: " + e); e.printStackTrace(); return;
 }
 }
}

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 51

RMI Registry

 Make objects accessible “to the world”

 Bind an object name with a reference
 Provides object search facilities (lookup)

 Must be on the same machine as the server.

"For security reasons, an application can only bind, unbind, or rebind
remote object references with a registry running on the same host”

 Generally on port 1099

 Accessible through

 A registry object
 Static methods of the Naming class

 eg. Naming.lookup(//<host>:<port>/<object))
F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 52

Compiling source files

 As with any Java program, use javac compiler to compile the
source files

 The source files contain

 the declarations of the remote interfaces
 their implementations
 any other server classes
 and the client classes

 With versions prior to Java Platform, Standard Edition 5.0

 an additional step was required to build stub classes
 by using the rmic compiler
 however, this step is no longer necessary

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 53

Compiling source files (2)

 This example separates

 The remote interface
 The remote object implementation class
 The server program class
 The client program class

 Compile the remote interface and build a jar file that contains it

 javac –d classes –classpath .:classes src/Hello.java
 jar cvf lib/Hello.jar classes/Hello.class

 Compile the remote object implementation class and build a jar
file that contains it

 javac –d classes –classpath .:classes:lib/Hello.jar src/HelloImp.java
 jar cvf lib/HelloImp.jar classes/HelloImp.class

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 54

Running example

 Compile and run server-side and client-side programs:

 Server-side
 Compile the server program

 javac –d classes –classpath .:classes:lib/Hello.jar:lib/HelloImp.jar
src/HelloServer.java

 Start RMI registry
 rmiregistry &

 Start the server
 java –classpath .:classes:lib/Hello.jar:lib/HelloImp.jar HelloServer

 Client-side
 Compile the client program

 javac –d classes –classpath .:classes:lib/Hello.jar src/HelloClient.java
 Start the client

 java –classpath .:classes:lib/Hello.jar HelloClient

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 55

A note about security

 Enforce by the Security Manager

 Checks permissions on system resources
 Files
 Sockets
 AWT
 ...

 RMI exploits the security manager

 Setting needed permission on sockets (eg. accessing to port 1099)
 Downloaded code and local code may need to run under different

permissions
 ...

See http://java.sun.com/javase/6/docs/technotes/guides/security/permissions.html

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 56

A note about security (2)

 The server and client programs run with a security manager
installed

 When either program runs, a security policy file must be
specified so that the code is granted the security permissions it
needs to run

 Example of a policy file to use with the server
grant{

permission java.net.SocketPermission "servername:1024-", "accept,connect";

};

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 57

Incoming lectures and practical work
on middleware

 Lectures
 Introduction to distributed systems and middleware
 Socket-based distributed systems
 RMI-based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services

 Practical work
 Programming distributed systems with Sockets
 Programming distributed systems with RMI
 Programming distributed systems with Servlets
 Project on multi-tier Internet services

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 58

References

This lecture is extensively based on:

 Sun Microsystems. Java Tutorial on RMI.
http://java.sun.com/docs/books/tutorial/rmi/

 M. Boger. Java in Distributed Systems: Concurrency, Distribution
and Persistence. Wiley, 2001.

 This lecture is based on lectures given by Sara Bouchenak

