
IBD – Intergiciels et
Bases de Données

RMI-based distributed systems

Fabien Gaud, Fabien.Gaud@inrialpes.fr

http://www-ufrima.imag.fr/ Placard électronique M1 Info IBD

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 2

Overview of lectures and practical work

 Lectures
 Introduction to distributed systems and middleware
 Socket-based distributed systems
 RMI-based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services

 Practical work
 Programming distributed systems with Sockets
 Programming distributed systems with RMI
 Programming distributed systems with Servlets
 Project on multi-tier Internet services

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 3

Motivations

 Sockets are a simple and flexible technology for data
communication in distributed systems

 Sockets are restricted to the transmission of data

 Sockets say nothing about the semantics of transferred data

 Application-level protocols provide the semantics

 Often time-consuming and error-prone to develop

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 4

Remote Procedure Call (RPC)

 Old technology – Still in use

 Developed in the 80s, for procedural languages
 Integrates transparently remote calls into the language

 Remote definition

 Across address spaces
 Across networks

 Technical issues for implementing RPC

 Different address spaces
 Heterogeneous machines

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 5

RPC challenges

 Local Procedure Call (same address space)

 Arguments are either passed as a pointer or a value
 Pointers refer to physical memory addresses
 Values are primitive types (int, float, long, double, etc.)

 Remote Procedure Call (different address spaces)

 Pointers are only valid within one address space
 Pointed-to data must be copied across address-space boundaries

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 6

RPC challenges (2)

 Heterogeneous machines

 In communication between heterogeneous computer
architectures, the internal representation of data on another
computer may not be the same as on the original computer

 Data sent in remote procedure calls must be converted into a
platform-independent data format (e.g. XDR – eXtensible Data
Representation)

 Data received in remote procedure calls must be converted back
into an internal representation of the receiver’s side

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 7

RPC versus RMI

 RPC Limitations

 The naming of RPC destinations (IP, port)
 Copy-only semantics for arguments

 RMI

 Suited for Object Oriented Programming Languages (OOPL)
 Use object identity to “name” the destination of the invocation
 Can pass “objects” by value or reference

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 8

Object oriented programming

 Objects
 Object identity (unique)
 Object state (data)

 Classes

 A class is a factory for its instances (objects)
 A class defines the structure of its instances
 Classes define the methods available on objects (behavior)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 9

Object oriented programming

 Interfaces
 Interfaces are abstract classes

 Interfaces define a contract as a behavior (methods)
 A client-server pattern

 The server class implements the interface
 The client class invokes methods of the interface

Server
Object

provides

Client

Server

Client
Object

abstract
contact

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 10

Outline

 Motivations

 A simple example

 The architecture of RMI

 A detailed example step by step

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 11

Java Virtual Machine

Simple Example

 Weather station

 You just bought a weather station for your week-end house
 It provides a Java package to access the weather sensors

 Temperature
 Wind speed and direction

WeatherStation

provides

Client

Server

AllLocalDisplay

IWeatherStation

AllLocalDisplay

AllLocalDisplay

WeatherStation

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 12

Simple Example

 Looking at the source

 The all-local case...

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 13

Simple Example

 Planning your week-ends

 You would like to read the information from your office...
 How do you access it?

 Problem: object references are only local to a JVM

Java Virtual Machine

WeatherStation

AllLocalDisplay

Java Virtual Machine

SimpleClient ?

On your office laptop... On your old desktop
in your week-end house...

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 14

JVM JVMJVM

A simple example

 What we need

 A way to refer to a remote object in a different JVM
 The ability to remotely invoke methods

thread stack remote
invoke

remote
reference

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 15

A simple example

RMI server

 Creates a remote server...

 Need a process that hosts the Java Virtual Machine

 Hosts one or more remote objects

 Each remote object
 Instance of a class that implements one or more Remote interface

Server process

Remote
Objects

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 16

A simple example

Registry

RMI server

 Naming the remote object

Server
Object

Server process

Skeleton

Stub

“Hello”

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 17

A simple example

RMI client

 Client looks up the name

RMI server

Skeleton
Server
Object

Server process

Stub

Registry
Stub

“Hello”

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 18

A simple example

 Client invokes methods on the remote object

 Does not involve the registry anymore
 Goes directly through stubs and skeletons

 Parameters are marshalized back and forth
 Strings are passed by value (copied)
 More on this later...

RMI serverRMI client

Server
Object

requests

responses

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 19

Simple Example

 Looking at the source

 The making of an RMI server
 The naming of a remote object
 The lookup of that remote object by a client
 The use of that remote object by a client

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 20

Outline

 Motivations

 A simple example

 The architecture of RMI

 A detailed example step by step

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 21

RMI Architecture

TCP/IP

RMI transport layer

RMI reference layer

Stub Skeleton

Client Server

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 22

RMI Architecture

 The stub and skeleton layer in RMI

 Stub
 Offers the same remote interfaces as the remote object
 Marshalls method arguments in a message

 Skeleton
 Receives messages from the stub

 Forwards calls to the server object
 Waits for results

 Sends results back to the stub

TCP/IP

RMI transport layer

RMI reference layer

Stub Skeleton

Client Server

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 23

RMI Architecture

 The reference layer in RMI

 Manages stubs and skeletons
 Dispatch messages on skeletons
 Worker thread selection

 Includes the name service (the registry)
 Includes distributed garbage collection

 The transport layer in RMI

 It manages communication connections
 Either over TCP/IP or HTTP

 It must not be confused with the
network transport layer (e.g. TCP/IP)

TCP/IP

RMI reference layer

Stub Skeleton

Client Server

RMI transport layer

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 24

RMI Architecture

 Multi-threaded execution model

 Server objects may be invoked from several clients
 Method invocations happen in parallel

 Server objects must be developed assuming multiple threads
 Use synchronized methods
 Use synchronized blocks

 RMI thread pool

 Manages a pool of threads
 Pick one thread to carry one invocation

RMI
server

Server
Object

requests

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 25

RMI server

RMI Architecture

 Thread pool details

request queue

main thread

worker thread

work_to_do

request
dispatcher

Client
Requests

worker thread
worker thread

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 26

About invocations

 Coming back on our simple example

 Remote references are accessible through stubs and skeletons
 What about remote invocations?

 How are the integer values passed around?
 How are the strings passed around?

JVMJVM

... remote
invoke ?

remote
reference

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 27

Argument semantics

 Two semantics

 By-value or by-reference
 By-value means a copy
 By-reference means no copy

 Applies to arguments and to returned results

 Primitive types

 They are boolean, byte, char, short, int, float, double
 Always marshalled by value through stubs and skeletons

 What about objects?

 Can be either by-value or by-reference...

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 28

Argument semantics

 Objects by-value

 Any object which is “serializable”
 The class of the object implements java.io.Serializable

 Copy semantics
 Deep copy... yields two objects: both on server and client sides
 Updates impact only the local copy

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 29

Argument semantics

 Objects by-value

 An example – a simple method returning a reference

invoke
Server
Object

Client
Object

return

Server
Object

Client
Object

public Object getObject();

is serializable

made a copy

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 30

Argument semantics

 Serialization

 Deep copy
 Recursive depth-first copy of an object graph from a root
 If any object encountered is not serializable, an exception is thrown

 Cycles are properly handled

root rootdeep copy

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 31

Argument semantics

 Serialization

 Individual object copy
 By default, all instance fields are copied
 Except for instance fields that are declared transient

 Attention
 Static fields are part of the class
 Not part of the instances of that class

root rootdeep copy

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 32

Argument semantics

 Java Runtime Environment

 Most JRE classes are serializable
 Their instances will be passed by value

 Examples

 Java collections such as hash tables or vectors
 String objects
 Arrays are serializable objects

 Some classes are not serializable

 Only make sense locally, such as files, sockets, threads, etc.

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 33

Back to our example

 Marshalling

 Integers passed by-value as arguments and return values
 String objects are passed by-value

 Improving performance

 Reducing the number of remote method invocations
 One remote invocations per information

 Introducing an WeatherData object
 Gathers all weather information
 Passed by-value, so it implements serializable

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 34

Argument semantics

 Objects by-reference

 All objects whose classes implement Remote interfaces
 A remote interface extends java.rmi.Remote

 Creates a stub-skeleton chain
 Carries method invocations up to the remote object
 Marshalling and unmarshalling arguments along the way
 Changes appear in the remote object

requests

responses

Server
Object

Client
Object

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 35

Argument semantics

 Objects by-reference

 An example – a simple method returning a reference

invoke
Server
Object

Client
Object

return

Server
Object

Client
Object

public Object getObject();

is a remote object

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 36

Back to our example

 Introduce weather stats

 We want to log weather information
 We introduced a logger object

 It collects periodically the weather information
 It is a remote object that gives the last set of weather information

 Impacts on the code

 Introduces a new interface, a new class, and a new remote object
 The remote object is a UnicastRemoteObject
 It is not named however
 It is returned by reference from a method on the weather station object

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 37

Distributed Garbage Collection

 Local garbage collection

 Java is a garbage collected language
 An object is garbage when it is no longer reachable from roots
 Roots are thread stacks and class statics

 The garbage collector detects and recycles garbage objects
 This is done automatically and periodically

root root

Garbage
Collection

root

X

Cut a reference

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 38

Distributed Garbage Collection

 Distributed garbage collection

 Natural extension to the local case
 If a stub is reachable, so is the skeleton
 If the stub is reachable, so is the remote object

Remote
Object

client
object

root

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 39

Distributed Garbage Collection

 Distributed garbage collection

 The RMI registry is a root
 Named objects are reachable and not garbage collected

Remote
Object

client
object

root

Registry
Stub

“Hello”

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 40

Where are classes ?

 Back to our example

 Which classes are needed by

 The server ?
 The client ?

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 41

Where are classes ? (2)

 Client / Server must have

 Interfaces for remote objects
 Implementation for serializable objects

 Code downloading

 Clients and/or servers may fetch unknown classes
 Various protocols can be used (http, ftp, ...)
 Uses a codebase (= path or URL)

Example

java ...
 -Djava.rmi.server.codebase=http://mywebsite.com/classes/compute.jar
 ...
 myServer

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 42

Outline

 Motivations

 A simple example

 The architecture of RMI

 A detailed example step by step

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 43

A detailed example step by step

 Main steps to create a distributed application with RMI:

Compile the source filesCompile the source files

Start the RMI registry

Implement the client programImplement the server program

Start the clientStart the server

Implement the remote object

Define the remote interface provided by the remote object

Client sideServer side

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 44

Application design

 Determine application architecture

 Which components are local objects
 And which components are remotely accessible
 What components are servers (creators of remote objects) and which

are clients (accessors to remote objects)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 45

Remote Interface

 Define remote interfaces

 A remote interface specifies the methods that can be invoked remotely
by a client on remote objects

 Determine types of objects that will be used as parameters and return
values for these methods
 Using copy
 Using reference

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 46

Remote interfaces

 Define the remote interface provided by the remote object:
 Extends java.rmi.Remote
 Each method must declare java.rmi.RemoteException

import java.rmi.Remote;
Import java.rmi.RemoteException;

public interface Hello extends Remote {

// A method provided by the remore object
public String sayHello() throws RemoteException;

}

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 47

Remote objects

 Implement the remote object in a class:
 Declare the remote interface being implemented
 Implement the set of methods that can be called remotely
 Implement any other local method that can not be invoked

remotely

Import java.rmi.RemoteException;

public class HelloImp implements Hello {
private String message;

 public Hello(String s) {
message = s ;

}

public String sayHello () throws RemoteException {
return message ;

}
}

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 48

Remote objects (2)

 Implement the remote object in a class

 Objects passed to or returned from remote methods must be
Serializable or Remote

 Remember: each method must declare a RemoteException

 May extend UnicastRemoteObject for creating stub automatically
otherwise stub must be manually created

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 49

Server side

 Implement the server program:

 Create and install a security manager
 Create remote objects
 Eventually create a stub
 Register remote objects with the RMI registry

import java.rmi.server.UnicastRemoteObject;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;

public class HelloServer {
 public static void main(String [] args){
 try {

 if (System.getSecurityManager() == null) { System.setSecurityManager(new SecurityManager());}
 HelloImp h = new HelloImp ("Hello world !");
 Hello h_stub = (Hello) UnicastRemoteObject.exportObject(h, 0);
 Registry registry= LocateRegistry.getRegistry();
 registry.bind("Hello1”, h_stub);

 } catch (Exception e) {
 System.err.println("Error on server :" + e) ; e.printStackTrace(); return;
 }
 }
}

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 50

Client side

 Implement the client program:

 Create and install a security manager
 Get a remote object reference
 Perform remote method invocations on the remote object

import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;

public class HelloClient {
 public static void main(String [] args) {
 if (args.lenght < 1) { System.out.println("Usage: java HelloClient <server host>"); return; }
 try {

if (System.getSecurityManager() == null) { System.setSecurityManager(new SecurityManager()); }
String host = arg[0];
Registry registry = LocateRegistry.getRegistry(host);
Hello h = (Hello) registry.lookup("Hello1");
String res = h.sayHello(); System.out.println(res);

 } catch (Exception e) {
 System.err.println("Error on client: " + e); e.printStackTrace(); return;
 }
 }
}

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 51

RMI Registry

 Make objects accessible “to the world”

 Bind an object name with a reference
 Provides object search facilities (lookup)

 Must be on the same machine as the server.

"For security reasons, an application can only bind, unbind, or rebind
remote object references with a registry running on the same host”

 Generally on port 1099

 Accessible through

 A registry object
 Static methods of the Naming class

 eg. Naming.lookup(//<host>:<port>/<object))
F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 52

Compiling source files

 As with any Java program, use javac compiler to compile the
source files

 The source files contain

 the declarations of the remote interfaces
 their implementations
 any other server classes
 and the client classes

 With versions prior to Java Platform, Standard Edition 5.0

 an additional step was required to build stub classes
 by using the rmic compiler
 however, this step is no longer necessary

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 53

Compiling source files (2)

 This example separates

 The remote interface
 The remote object implementation class
 The server program class
 The client program class

 Compile the remote interface and build a jar file that contains it

 javac –d classes –classpath .:classes src/Hello.java
 jar cvf lib/Hello.jar classes/Hello.class

 Compile the remote object implementation class and build a jar
file that contains it

 javac –d classes –classpath .:classes:lib/Hello.jar src/HelloImp.java
 jar cvf lib/HelloImp.jar classes/HelloImp.class

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 54

Running example

 Compile and run server-side and client-side programs:

 Server-side
 Compile the server program

 javac –d classes –classpath .:classes:lib/Hello.jar:lib/HelloImp.jar
src/HelloServer.java

 Start RMI registry
 rmiregistry &

 Start the server
 java –classpath .:classes:lib/Hello.jar:lib/HelloImp.jar HelloServer

 Client-side
 Compile the client program

 javac –d classes –classpath .:classes:lib/Hello.jar src/HelloClient.java
 Start the client

 java –classpath .:classes:lib/Hello.jar HelloClient

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 55

A note about security

 Enforce by the Security Manager

 Checks permissions on system resources
 Files
 Sockets
 AWT
 ...

 RMI exploits the security manager

 Setting needed permission on sockets (eg. accessing to port 1099)
 Downloaded code and local code may need to run under different

permissions
 ...

See http://java.sun.com/javase/6/docs/technotes/guides/security/permissions.html

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 56

A note about security (2)

 The server and client programs run with a security manager
installed

 When either program runs, a security policy file must be
specified so that the code is granted the security permissions it
needs to run

 Example of a policy file to use with the server
grant{

permission java.net.SocketPermission "servername:1024-", "accept,connect";

};

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 57

Incoming lectures and practical work
on middleware

 Lectures
 Introduction to distributed systems and middleware
 Socket-based distributed systems
 RMI-based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services

 Practical work
 Programming distributed systems with Sockets
 Programming distributed systems with RMI
 Programming distributed systems with Servlets
 Project on multi-tier Internet services

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 58

References

This lecture is extensively based on:

 Sun Microsystems. Java Tutorial on RMI.
http://java.sun.com/docs/books/tutorial/rmi/

 M. Boger. Java in Distributed Systems: Concurrency, Distribution
and Persistence. Wiley, 2001.

 This lecture is based on lectures given by Sara Bouchenak

