
IBD – Intergiciels et
Bases de Données

Servlet-based distributed systems

Fabien Gaud, fabien.gaud@inrialpes.fr

http://www-ufrima.imag.fr/  Placard électronique  M1 Info  IBD

F. Gaud / S. Bouchenak Distributed systems & Middleware 2

Overview of lectures and practical work

 Lectures
 Introduction to distributed systems and middleware
 Socket-based distributed systems
 RMI-based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services

 Practical work
 Programming distributed systems with Sockets
 Programming distributed systems with RMI
 Programming distributed systems with Servlets
 Project on multi-tier Internet services

F. Gaud / S. Bouchenak Distributed systems & Middleware 3

Introduction – Web applications

 Communication between client and server

 In a web application, client and server communicate via the HTTP
protocol (HyperText Transfer Protocol)

 Web requests

 Client wants to access a remote “resource” available on the server

 A resource in the WWW is identified and located using a URL

 A resource can be:
 a file or a directory
 a reference to a more complicated object, e.g. a query to a database, a

query to a search engine, a program to run

F. Gaud / S. Bouchenak Distributed systems & Middleware 4

What are Servlets

 Servlets are Java programs which run in a server

 Need a JVM and a servlet container

 They can be remotely requested (e.g. by web clients)

 Servlets that run on a web server build web pages on the fly,
and return them to clients

 Building web pages on the fly is useful for a number of reasons:

 The Web page is based on data submitted by the user
 The data changes frequently
 The Web page uses information from corporate databases or other

such sources

F. Gaud / S. Bouchenak Distributed systems & Middleware 5

Advantages of Servlets

 Efficiency

 One process, the JVM
 One thread per request (with traditional CGI, one process per request)
 Can use pool of threads
 Memory efficiency since servlet code is only loaded one time

 Portability

 Servlets are written in Java and follow a well-standardized API.
 Servlets can run virtually unchanged on any Servlet server (e.g.

Apache Tomcat, IBM’s WebSphere Application Server, etc.)

 Power

 User session tracking
 Database connection pools
 etc.

F. Gaud / S. Bouchenak Distributed systems & Middleware 6

Outline

 Introduction

 HTTP basics

 Servlet basics

 Miscellaneous

F. Gaud / S. Bouchenak Distributed systems & Middleware 7

HTTP basics

 HTTP: HyperText Transfer Protocol

 A communication protocol
 Used to transfer hypertext data on the World Wide Web (WWW)

 A protocol (in the general sense)

 Guidelines and rules governing interactions between two parties
 Examples:

 In diplomacy: standards of behavior and ceremony to be observed by
diplomats and heads of state in relation to each other

 Tests and experiments: clinical trial protocol, the method used in a
clinical trial of a drug or medical treatment

 Computing: a set of rules governing communication between computing
endpoints

F. Gaud / S. Bouchenak Distributed systems & Middleware 8

HTTP basics (2)

 HTTP protocol specifies

 Requests
 Responses
 Headers

 Requests invoke a particular method within the set of HTTP
methods

 HTTP GET method
 HTTP POST method
 Other HTTP methods

F. Gaud / S. Bouchenak Distributed systems & Middleware 9

HTTP requests

 HTTP: a simple stateless communication protocol

 An HTTP client (e.g. a web browser) makes a request to an HTTP
server

 The HTTP server (e.g. a web server) responds
 And the transaction is done

 Possibilities to maintain a client session

 Request

 Client request has the following form:
 a method,
 target resource address (a URL),
 HTTP protocol version

F. Gaud / S. Bouchenak Distributed systems & Middleware 10

HTTP request headers

 When sending the request, the client can send optional header
information containing extra information about the request such
as:

 What software the client is running
 What content types the client understands

 The request ends with an empty line

 This information does not directly pertains to what was
requested, but it could be used by the server to generate its
response

F. Gaud / S. Bouchenak Distributed systems & Middleware 11

HTTP Request Example

 GET / HTTP/1.1\r\n
 Host: www.google.fr\r\n
 User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.0.3) Gecko/2008092814 Iceweasel/3.0.3
(Debian-3.0.3-3)\r\n
 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n
 Accept-Language: fr-fr,fr;q=0.8,en-us;q=0.5,en;q=0.3\r\n
 Keep-Alive: 300\r\n
 Connection: keep-alive\r\n
 \r\n

F. Gaud / S. Bouchenak Distributed systems & Middleware 12

HTTP responses

 After the server processes the request, it sends an HTTP
response

 The first line of the response specifies the following:

 server’s HTTP protocol version
 a status code (e.g. 200 for successful, 404 for “Not Found”)
 a description of the status code

F. Gaud / S. Bouchenak Distributed systems & Middleware 13

HTTP response headers

 After sending the status line, the server sends header
information

 The header tells the client extra information about the response
such as:

 What software the server is running
 Mime type
 Last modification
 ...

 The server sends a blank line after the header

 If the request was successful, the requested data is sent as
part of the response

F. Gaud / S. Bouchenak Distributed systems & Middleware 14

HTTP Response example

 HTTP/1.1 200 OK\r\n
 Content-Type: text/javascript; charset=UTF-8\r\n
 Expires: Sat, 31 Oct 2009 00:00:00 GMT\r\n
 Last-Modified: Sat, 03 Nov 2007 00:00:00 GMT\r\n
 Content-Encoding: gzip\r\n
 Date: Sat, 01 Nov 2008 15:39:48 GMT\r\n
 Server: gws\r\n
 Content-Length: 2098
 \r\n

F. Gaud / S. Bouchenak Distributed systems & Middleware 15

HTTP GET method

 GET method is designed for getting a resource

 Examples:
 an HTML/image file,
 a chart
 the result of a database query

 GET method can have parameters that better describe what to
get

 Example: an x, y scale for a dynamically created chart
 Parameters are passed as a sequence of characters appended to the

request URL (i.e. a query string)

http://www.google.com/search?hl=fr&q=java+servlet&

F. Gaud / S. Bouchenak Distributed systems & Middleware 16

HTTP POST method

 POST method is designed for posting information

 Examples:
 a credit card number
 some new chart data
 information to be stored in a database

 POST method passes all its data as part of the HTTP request
body

 It may need to send megabytes of information

 POST requests should not be bookmarked or emailed (or
reloaded)

F. Gaud / S. Bouchenak Distributed systems & Middleware 17

Other HTTP methods

 HEAD method

 Sent by a client when it wants to see only the headers of the response

 PUT method

 Place documents directly on the server

 DELETE method

 Delete documents from the server

 TRACE method

 Return to the client the exact contents of its request (used for
debugging)

 OPTIONS method

 Ask the server which methods its supports
F. Gaud / S. Bouchenak Distributed systems & Middleware 18

Example of HTTP protocol
[TCP CONNECTION]

No. Time Source Destination Protocol Info
 16 5.759810 192.168.1.12 209.85.129.99 HTTP GET / HTTP/1.1
...

No. Time Source Destination Protocol Info
 22 5.868998 209.85.129.99 192.168.1.12 HTTP HTTP/1.1 200 OK (text/html)
...

No. Time Source Destination Protocol Info
 24 5.933494 192.168.1.12 209.85.129.99 HTTP GET /intl/fr_fr/images/logo.gif HTTP/1.1
...

No. Time Source Destination Protocol Info
 34 6.044061 192.168.1.12 209.85.129.99 HTTP GET
/extern_js/f/CgJmchICZnIrMAo4CCwrMBg4Ayw/M9fS1wFmImE.js HTTP/1.1
...

No. Time Source Destination Protocol Info
 41 6.105651 209.85.129.99 192.168.1.12 HTTP HTTP/1.1 200 OK (GIF89a)
...

No. Time Source Destination Protocol Info
 46 6.142670 209.85.129.99 192.168.1.12 HTTP HTTP/1.1 200 OK (text/javascript)
...

[TCP FIN]

F. Gaud / S. Bouchenak Distributed systems & Middleware 19

Outline

 Introduction

 HTTP basics

 Servlet basics

 Generic servlets and HTTP servlets
 Servlet lifcycle
 Servlet API
 A simple example
 Getting information from requests
 An HTML form example

 Miscellaneous

F. Gaud / S. Bouchenak Distributed systems & Middleware 20

A generic servlet handling a request

service ()

Servlet Server

Servlet Interface

GenericServlet abstract class

request
response

Implemented by subclass

“service” method is the GenericServlet’s entry point

F. Gaud / S. Bouchenak Distributed systems & Middleware 21

An HTTP servlet handling GET and
POST requests

service ()

HTTP (i.e. web) and Servlet server

Servlet Interface

HttpServlet subclass

GET request
response

POST request

response

Implemented by subclass

doGet ()

doPost ()

“doGet” method is the HttpServlet’s entry point for GET requests

“doPost” method is the HttpServlet’s entry point for POST requests

F. Gaud / S. Bouchenak Distributed systems & Middleware 22

Web Container

Servlet

Servlet lifecycle

Web Container

Web Container

Servlet

Servlet

Web Container

Servlet

Servlet

1. Loading class

2. Initialization

init() method

3. Processing requests

service() method

4. Unloading

destroy() method
©D. Donsez

F. Gaud / S. Bouchenak Distributed systems & Middleware 23

Servlet lifecycle (2)

 A Servlet is an instance of a class which implements the
javax.servlet.Servlet interface

 A Servlet server initializes a Servlet by

 loading the Servlet class, and
 creating an instance of the Servlet by calling the no-args constructor,

then
 calling the Servlet's init(ServletConfig config) method

 Servlet’s init(ServletConfig config) method

 Performs any necessary initialization of the Servlet and stores the
ServletConfig object

 The ServletConfig object contains Servlet parameters and a reference
to the Servlet's ServletContext

 Is guaranteed to be called only once during the Servlet's lifecycle
F. Gaud / S. Bouchenak Distributed systems & Middleware 24

Servlet lifecycle (3)

 Servlet’s service method

 When the Servlet is initialized, its service(ServletRequest req,
ServletResponse res) method is called for every request to the Servlet

 The method is called concurrently (i.e. multiple threads may call this
method at the same time)

 It should be implemented in a thread-safe manner

 Servlet’s destroy method

 Sometimes, a Servlet may need to be unloaded (e.g. because a new
version should be loaded or the server is shutting down)

 When the Servlet needs to be unloaded, the destroy() method is called
 There may still be threads that execute the service method when

destroy is called, so destroy has to be thread-safe
 This method is guaranteed to be called only once during the Servlet's

lifecycle

F. Gaud / S. Bouchenak Distributed systems & Middleware 25

Servlet API

 Package javax.servlet

 Contains classes to support generic, protocol-independent servlets
 Some elements of the package:

 Servlet interface:
 defines methods that all servlets must implement

 GenericServlet abstract class:
 defines a generic, protocol-independent servlet

 ServletRequest interface:
 defines an object to provide client request information to a servlet

 ServletResponse interface:
 defines an object to assist a servlet in sending a response to the client

 ServletConfig interface:
 Information used by a servlet container to pass to a servlet during initialization

 ServletContext interface:
 defines a set of methods that a servlet uses to communicate with its servlet

container (e.g. write to a log file, bind an object to a given attribute, ...)
F. Gaud / S. Bouchenak Distributed systems & Middleware 26

Servlet API (2)

 Package javax.servlet.http

 Contains classes to support HTTP-based servlets
 Some elements of the package:

 HttpServlet abstract class:
 subclass of GenericServlet, provides an abstract class to be subclassed to create

an HTTP servlet suitable for a Web site

 HttpServletRequest interface:
 extends the ServletRequest interface to provide request information for HTTP

servlets

 HttpServletResponse interface:
 extends the ServletResponse interface to provide HTTP-specific functionality in

sending a response

F. Gaud / S. Bouchenak Distributed systems & Middleware 27

HTML basics

 The most basic type of HTTP servlet generates HTML pages

 HTML (HyperText Markup Language)

 The predominant markup language for web pages
 Provides a means to describe the structure of text-based information

in a document
 Denotes certain text as headings, paragraphs, lists, etc.
 Supplements the text with interactive forms, embedded images, and

other objects

F. Gaud / S. Bouchenak Distributed systems & Middleware 28

An HTML source page

<HTML>

<HEAD>
<TITLE>

Hello World
</TITLE>

</HEAD>

<BODY>
<P>

Hello World
</P>

</BODY>

</HTML>

F. Gaud / S. Bouchenak Distributed systems & Middleware 29

A simple HTTP Servlet

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorldServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType(“text/html”);
PrintWriter out = res.getWriter();
out.println(“<HTML>”);
out.println(“<HEAD> <TITLE> Hello World </TITLE> </HEAD>”);
out.println(“<BODY> <P> Hello World </P> </BODY>”);

 out.println(“</HTML>”);
out.close();

}

}

F. Gaud / S. Bouchenak Distributed systems & Middleware 30

Getting information from requests

 A request contains data passed between a client and the
servlet

 All requests implement the ServletRequest interface

 This interface defines methods for accessing information such
as:

 String getParameter(String name):
 returns the value of a request parameter as a String

 String getProtocol():
 returns the name and version of the protocol the request uses

 String getRemoteAddr():
 returns the Internet Protocol (IP) address of the client that sent the

request
 etc.

F. Gaud / S. Bouchenak Distributed systems & Middleware 31

Getting information from requests (2)

public class BookInfoServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

...
String bookId = req.getParameter("bookId");
if (bookId != null) {

// Retrieve information about that book
...

}
...

}
...

}

 Example:

 A customer wishes to get information about a book.
 He calls BookInfoServlet and includes the identifier of the book in his

request
 For example: http://host:port/servlets/BookInfoServlet?bookId=1234

F. Gaud / S. Bouchenak Distributed systems & Middleware 32

The HTML source form

<HTML>

<HEAD>
<TITLE>

Title
</TITLE>

</HEAD>

<BODY>
<FORM METHOD=GET ACTION="servlet/HelloWorldServlet" >

If you don't mind me asking, what is your name?
<INPUT TYPE=TEXT NAME="name" />

<INPUT TYPE=SUBMIT />

</FORM>
</BODY>

</HTML>

F. Gaud / S. Bouchenak Distributed systems & Middleware 33

A simple HTTP Servlet handling a form

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorldServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType(“text/html”);
PrintWriter out = res.getWriter();

String name = req.getParameter(“name”);

out.println(“<HTML>”);
out.println(“<HEAD> <TITLE> Hello,” + name + “</TITLE></HEAD>”);
out.println(“<BODY>”);
out.println(“Hello, ” + name);
out.println(“</BODY>”);
out.println(“</HTML>”);
out.close();

}

}

F. Gaud / S. Bouchenak Distributed systems & Middleware 34

Basic HTTP Servlet structure

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class MyServlet extends HttpServlet {
public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

// Use "request" to read incoming HTTP headers and HTML form data
// (e.g. data the user entered and submitted)
...

// Perform any internal processing for generating dynamic results
...

// Use "response" to specify the HTTP response line and headers
// (e.g. specifying the content type).
PrintWriter out = response.getWriter();
// Use "out" to send content to browser
...

}
...

F. Gaud / S. Bouchenak Distributed systems & Middleware 35

Basic HTTP Servlet structure (2)

...

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

doGet(req, res);

}

}

F. Gaud / S. Bouchenak Distributed systems & Middleware 36

Outline

 Introduction

 HTTP basics

 Servlet basics

 Miscellaneous

 User authentication
 User session based on username
 User session based on cookies

F. Gaud / S. Bouchenak Distributed systems & Middleware 37

User authentication

 Objective

 Restrict access to some of resources of the web application

 Example

 A magazine is published online
 Only paid subscribers can read the articles

 Principles

 An HTTP server has a built-in capability to restrict access to some or
all of its resources to a given set of registered users.

 How to set up restricted access depends on the server, but here are
the underlying principles

 The first time a web client (e.g. Browser) attempts to access one of
these resources, the HTTP server replies that it needs special user
authentication

F. Gaud / S. Bouchenak Distributed systems & Middleware 38

User authentication (2)

 Principles (cont.)

 When the browser receives this response, it usually asks the user for
a name and password

 Once the user enters his information, the browser again attempts to
access the resource, this time attaching the user's name and
password along with the request

 If the server accepts the name/password pair, it happily handles the
request.

 If, on the other hand, the server doesn't accept the name/password
pair, the browser is denied

F. Gaud / S. Bouchenak Distributed systems & Middleware 39

Servlets and user authentication

 When access to a servlet has been restricted by the server, the
servlet can get the name of the user that was accepted by the
server

 Uses the getRemoteUser() method
 This information is retrieved from the servlet's HttpServletRequest

object
 public String HttpServletRequest.getRemoteUser()

 This method returns the name of the user making the request
as a String, or null if th user login is not known

 At this time, the user authentication has already been done by the
server

F. Gaud / S. Bouchenak Distributed systems & Middleware 40

User session based on username

 Username can be used to track a client session

 Once a user has logged in, the browser remembers his
username

 A servlet can identify the user through his username and
thereby track her session

 Example

 if the user adds an item to her virtual shopping cart, that fact can be
remembered (e.g. in a shared class or external database)

 This can be used later by another servlet when the user goes to the
check-out page

F. Gaud / S. Bouchenak Distributed systems & Middleware 41

User session based on username (2)

 Example:

 A servlet utilizes user authorization to add items to a user's shopping
cart

String name = req.getRemoteUser();
if (name == null) {

// Explain that the server administrator should
// protect this resource

} else {
String[] items = req.getParameterValues("item");
if (items != null) {

for (int i = 0; i < items.length; i++) {
addItemToCart(name, items[i]);

}
}

}

F. Gaud / S. Bouchenak Distributed systems & Middleware 42

User session based on username (3)

 Example:

 Another servlet can then retrieve the items from a user's cart

String name = req.getRemoteUser();
if (name == null) {

// Explain that the server administrator should protect
// this page

} else {
String[] items = getItemsFromCart(name);
...

}

F. Gaud / S. Bouchenak Distributed systems & Middleware 43

User session based on cookies

 Servlet API provides the javax.servlet.http.Cookie class for
working with cookies

 A cookie is created with the Cookie() constructor

 public Cookie(String name, String value)
 Value can be changed later

 A servlet can send a cookie to the client by passing a Cookie
object to the addCookie() method of HttpServletResponse

 public void HttpServletResponse.addCookie(Cookie cookie)

 Because cookies are sent using HTTP headers, they should be
added to the response before you send any content.

 Number and size of cookie are restricted
F. Gaud / S. Bouchenak Distributed systems & Middleware 44

User session based on cookies (2)

 A servlet sets a cookie like this:
Cookie cookie = new Cookie("ID", "123");

res.addCookie(cookie);

 A servlet retrieves cookies by calling the getCookies() method
of HttpServletRequest:

public Cookie[] HttpServletRequest.getCookies()

 A servlet fetches cookies looks like this:
Cookie[] cookies = req.getCookies();

if (cookies != null) {

for (int i = 0; i < cookies.length; i++) {

String name = cookies[i].getName();

String value = cookies[i].getValue();

}

}

F. Gaud / S. Bouchenak Distributed systems & Middleware 45

Incoming lectures and practical work
on middleware

 Lectures
 Introduction to distributed systems and middleware
 Socket-based distributed systems
 RMI-based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services

 Practical work
 Programming distributed systems with Sockets
 Programming distributed systems with RMI
 Programming distributed systems with Servlets
 Project on multi-tier Internet services

F. Gaud / S. Bouchenak Distributed systems & Middleware 46

References

This lecture is extensively based on:

 S. Bodoff. Java Servlet Technology.
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html

 M. Boger. Java in Distributed Systems: Concurrency, Distribution and
Persistence. Wiley, 2001.

 M. Hall. Servlets and Java ServerPages: A Tutorial.
http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/

 J. Hunter, W. Crawford. Java Servlet Programming. O’Reilly, 1998.

 S. Zeiger. Servlet Essentials.
http://www.novocode.com/doc/servlet-essentials/

